11 resultados para Mediating
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Previous studies from our laboratory have documented that the medial hypothalamic defensive system is critically involved in processing actual and contextual predatory threats, and that the dorsal premammillary nucleus (PMd) represents the hypothalamic site most responsive to predatory threats. Anatomical findings suggest that the PMd is in a position to modulate memory processing through a projecting branch to specific thalamic nuclei, i.e., the nucleus reuniens (RE) and the ventral part of the anteromedial nucleus (AMv). In the present study, we investigated the role of these thalamic targets in both unconditioned (i.e., fear responses to predatory threat) and conditioned (i.e., contextual responses to predator-related cues) defensive behaviors. During cat exposure, all experimental groups exhibited intense defensive responses with the animals spending most of the time in the home cage displaying freezing behavior. However, during exposure to the environment previously associated with a cat, the animals with combined RE + AMv lesions, and to a lesser degree, animals with single AMv unilateral lesions, but not animals with single RE lesions, presented a reduction of contextual conditioned defensive responses. Overall, the present results provide clear evidence suggesting that the PMd`s main thalamic targets (i.e., the nucleus reuniens and the AMv) seem to be critically involved in the emotional memory processing related to predator cues. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In the present work, we sought to mimic the internal state changes in response to a predator threat by pharmacologically stimulating the brain circuit involved in mediating predator fear responses, and explored whether this stimulation would be a valuable unconditioned stimulus (US) in an olfactory fear conditioning paradigm (OFC). The dorsal premammillary nucleus (PMd) is a key brain structure in the neural processing of anti-predatory defensive behavior and has also been shown to mediate the acquisition and expression of anti-predatory contextual conditioning fear responses. Rats were conditioned by pairing the US, which was an intra-PMd microinjection of isoproterenol (ISO; beta-adrenoceptor agonist), with amyl acetate odor-the conditioned stimulus (CS). ISO (10 and 40 nmol) induced the acquisition of the OFC and the second-order association by activation of beta-1 receptors in the PMd. Furthermore, similar to what had been found for contextual conditioning to a predator threat, atenolol (beta-1 receptor antagonist) in the PMd also impaired the acquisition and expression of OFC promoted by ISO. Considering the strong glutamatergic projections from the PMd to the dorsal periaqueductal gray (dPAG), we tested how the glutamatergic blockade of the dPAG would interfere with the OFC induced by ISO. Accordingly, microinjections of NMDA receptor antagonist (AP5, 6 nmol) into the dPAG were able to block both the acquisition, and partially, the expression of the OFC. In conclusion, we have found that PMd beta-1 adrenergic stimulation is a good model to mimic predatory threat-induced internal state changes, and works as a US able to mobilize the same systems involved in the acquisition and expression of predator-related contextual conditioning. Neuropsychopharmacology (2011) 36, 926-939; doi:10.1038/npp.2010.231; published online 5 January 2011
Resumo:
Role of reactive oxygen species (ROS)/nitric oxide (NO) balance and renin-angiotensin system in mediating cardiac hypertrophy in hyperthyroidism was evaluated in an in vivo and in vitro experimental model. Male Wistar rats were divided into four groups: control, thyroid hormone, vitamin E (or Trolox, its hydrosoluble analogue), thyroid hormone + vitamin E. Angiotensin II receptor (AT1/AT2) gene expression, immunocontent of AT1/AT2 receptors, angiotensinogen, NADPH oxidase (Nox2), and nitric oxide synthase isoforms, as well as ROS concentration (hydrogen peroxide and superoxide anion) were quantified in myocardium. Thyroid hormone increased ROS and NO metabolites, iNOS, nNOS and eNOS isoforms and it was accompanied by cardiac hypertrophy. AT1/AT2 expression and the immunocontent of angiotensinogen and Nox2 were enhanced by thyroid hormone. Antioxidants reduced ROS levels, Nox2, AT1/AT2, NOS isoforms and cardiac hypertrophy. In conclusion, ROS/NO balance may play a role in the control of thyroid hormone-induced cardiac hypertrophy mediated by renin-angiotensin system. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Redox processes associated with controlled generation of reactive oxygen species (ROS) by NADPH oxidase (Nox) add an essential level of regulation to signaling pathways underlying physiological processes. We evaluated the ROS generation in the main visual relays of the mammalian brain, namely the superior colliculus (SC) and the dorsal lateral geniculate nucleus (DLG), after ocular enucleation in adult rats. Dihydroethidium (DHE) oxidation revealed increased ROS generation in SC and DLG between 1 and 30 days postlesion. ROS generation was decreased by the Nox inhibitors diphenyleneiodonium chloride (DPI) and apocynin. Real-time PCR results revealed that Nox 2 was upregulated in both retinorecipient structures after deafferentation, whereas Nox 1 and Nox 4 were upregulated only in the SC. To evaluate the role of ROS in structural remodeling after the lesions, apocynin was given to enucleated rats and immunohistochemistry was conducted for markers of neuronal remodeling into SC and DLG. Immunohistochemical data showed that ocular enucleation produces an increase of neurofilament and microtubule-associated protein-2 immunostaining in both SC and DLG, which was markedly attenuated by apocynin treatment. Taken together, the findings of the present study suggest a novel role for Nox-induced ROS signaling in mediating neuronal remodeling in visual areas after ocular enucleation. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Animals faced with conflicting cues, such as predatory threat and a given rewarding stimulus, must make rapid decisions to engage in defensive versus other appetitive behaviors. The brain mechanisms mediating such responses are poorly understood. However, the periaqueductal gray (PAG) seems particularly suitable for accomplishing this task. The PAG is thought to have, at least, two distinct general roles on the organization of motivated responses, i.e., one on the execution of defensive and reproductive behaviors, and the other on the motivational drive underlying adaptive responses. We have presently examined how the PAG would be involved in mediating the behavioral choice between mutually incompatible behaviors, such as reproduction or defense, when dams are exposed to pups and cat odor. First, we established the behavioral protocol and observed that lactating rats, simultaneously exposed to pups and cat odor, inhibited maternal behavior and expressed clear defensive responses. We have further revealed that cat odor exposure up-regulated Fos expression in the dorsal PAG, and that NMDA cytotoxic lesions therein were able to restore maternal responses, and, at the same time, block defensive responsiveness to cat odor. Potential paths mediating the dorsal PAG influences on the inhibition of appetitive (i.e., retrieving behavior) and consummatory (i.e., nursing) maternal responses are discussed. Overall, we were able to confirm the dual role of the PAG, where, in the present case, the dorsal PAG, apart from organizing defensive responses, also appears to account for the behavioral inhibition of non-defensive responses. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective: In this study we have assessed the renal and cardiac consequences of ligature-induced periodontitis in both normotensive and nitric oxide (NO)-deficient (L-NAME-treated) hypertensive rats. Materials and methods: Oral L-NAME (or water) treatment was started two weeks prior to induction of periodontitis. Rats were sacrificed 3, 7 or 14 days after ligature placement, and alveolar bone loss was evaluated radiographically. Thiobarbituric reactive species (TBARS; a lipid peroxidation index), protein nitrotyrosine (NT; a marker of protein nitration) and myeloperoxidase activity (MPO; a neutrophil marker) were determined in the heart and kidney. Results: In NO-deficient hypertensive rats, periodontitis-induced alveolar bone loss was significantly diminished. In addition, periodontitis-induced cardiac NT elevation was completely prevented by L-NAME treatment. On the other hand L-NAME treatment enhanced MPO production in both heart and kidneys of rats with periodontitis. No changes due to periodontitis were observed in cardiac or renal TBARS content. Conclusions: In addition to mediating alveolar bone loss, NO contributes to systemic effects of periodontitis in the heart and kidney. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Inflammatory diseases associated with pain are often difficult to treat in the clinic due to insufficient understanding of the nociceptive pathways involved. Recently, there has been considerable interest in the role of reactive oxygen species (ROS) in inflammatory disease, but little is known of the role of hydrogen peroxide (H(2)O(2)) in hyperalgesia. In the present study, intraplantar injection of H(2)O(2)-induced a significant dose- and time-dependent mechanical and thermal hyperalgesia in the mouse hind paw, with increased c-fos activity observed in the dorsal horn of the spinal cord. H(2)O(2) also induced significant nociceptive behavior Such as increased paw licking and decreased body liftings. H(2)O(2) levels were significantly raised in the carrageenan-induced hind paw inflammation model, showing that this ROS is produced endogenously in a model of inflammation. Moreover, superoxide dismutase and catalase significantly reduced carrageenan-induced mechanical and thermal hyperalgesia, providing evidence of a functionally significant endogenous role. Thermal, but not mechanical, hyperalgesia in response to H(2)O(2) (i.pl.) Was longer lasting in TRPV1 wild type mice compared to TRPV1 knockouts. It is unlikely that downstream lipid peroxidation was increased by H(2)O(2). In conclusion, we demonstrate a notable effect of H(2)O(2) in mediating inflammatory hyperalgesia, thus highlighting H(2)O(2) removal as a novel therapeutic target for anti-hyperalgesic drugs in the clinic. (C) 2008 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
In alveolar macrophages, leukotriene (IT) B(4) and cysteinyl LTs (LTC(4), LTD(4) and LTE(4)) both enhance Fc gamma receptor (Fc gamma R)-mediated phagocytosis. In the present study we investigated the role of specific PKC isoforms (PKC-alpha and -delta), the MAP kinases p38 and ERK 1/2, and PI3K in mediating the potentiation of Fc gamma R-mediated phagocytosis induced by addition of leukotrienes to the AMs. It was found that exogenously added LTB(4) and LTD(4) both enhanced PKC-delta and -alpha phosphorylation during Fc gamma R engagement. Studies with isoform-selective inhibitors indicated that exogenous LTB(4) effects were dependent on both PKC-alpha and -delta, while LTD(4) effects were exclusively due to PKC-delta activation. Although both exogenous LTB(4) and LTD(4) enhanced p38 and ERK 1/2 activation, LTB(4) required only ERK 1/2, while LTD(4) required only p38 activation. Activation by both LTs was dependent on PI3K activation. Effects of endogenous LTs on kinase activation were also investigated using selective LT receptor antagonists. Endogenous LTB(4) contributed to Fc gamma R-mediated activation of PKC-alpha, ERK 1/2 and PI3K, while endogenous cysLTs contributes to activation of PKC-delta, p38 and PI3K. Taken together, our data show that the capacities of LTB(4) and LTD(4) to enhance Fc gamma R-mediated phagocytosis reflect their differential activation of specific kinase programs. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: Inhibitory signals mediated via molecules such as programmed death-1 (PD-1) play a critical role in downmodulating immune responses and maintaining peripheral tolerance. We investigated the involvement of cytokines and PD-1 engagement in mediating the T-cell unresponsiveness to bacterial and ubiquitous antigens in periodontal diseases. Methods: Gingival and peripheral blood samples from healthy individuals and patients with chronic periodontitis were collected and used for the subsequent assays. Leukocytes in the lesion site and blood were evaluated using flow cytometry. The production of interferon-gamma, interleukin-10, and transforming growth factor-P proteins was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of PD-1+cells in the inflamed gingiva was confirmed by immunofluorescence confocal microscopy for CD4 and PD-1 colocalization. Results: T cells from patients with chronic periodontitis proliferated poorly in response to Aggregatibacter actinomycetem comitans (previously Actinobacillus actinomycetemcomitans) antigen. T-cell unresponsiveness was not associated with imbalanced cytokine production. However, T cells from patients with chronic periodontitis expressed significantly higher levels of PD-1 either upon isolation or after culture with antigens. Moreover, PD-1 blocking did not result in significant T-cell proliferation in cells cultured with phytohemagglutinin or bacterial antigens. The blockade of PD-1 resulted in the increased production of IFN-gamma. In addition, CD4+ and CD8+ T cells expressing PD-1 accumulated in lesions with chronic periodontitis. Conclusion: These data show that PD-1 engagement could be involved in the modulation of IFN-gamma production by T cells in patients with chronic periodontitis. J Periodontol 2009,80:1833-1844.
Resumo:
Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.
Resumo:
The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (R(free)=21.2%) at 1.70 angstrom resolution and 15.81% (R(free) = 19.2%) at 1.85 angstrom resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly beta-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity. (C) 2008 Elsevier Ltd. All rights reserved.