82 resultados para Mechel, C. v., 1737-1818.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Defects are usually present in organic polymer films and are commonly invoked to explain the low efficiency obtained in organic-based optoelectronic devices. We propose that controlled insertion of substitutional impurities may, on the contrary, tune the optoelectronic properties of the underivatized organic material and, in the case studied here, maximize the efficiency of a solar cell. We investigate a specific oxygen-impurity substitution, the keto-defect -(CH(2)-C=O)- in underivatized crystalline poly(p-phenylenevinylene) (PPV), and its impact on the electronic structure of the bulk film, through a combined classical (force-field) and quantum mechanical (DFT) approach. We find defect states which suggest a spontaneous electron hole separation typical of a donor acceptor interface, optimal for photovoltaic devices. Furthermore, the inclusion of oxygen impurities does not introduce defect states in the gap and thus, contrary to standard donor-acceptor systems, should preserve the intrinsic high open circuit voltage (V(oc)) that may be extracted from PPV-based devices.
Resumo:
Polycrystalline Eu(2+) and Dy(3+) doped barium aluminate materials, BaAl(2)O(4):Eu(2+),Dy(3+), were prepared with solid state reactions at temperatures between 700 and 1500 degrees C. The influence of the thermal treatments on the stability, homogeneity and structure as well as to the UV-excited and persistent luminescence of the materials was investigated by X-ray powder diffraction, SEM imaging and infrared spectroscopies as well as by steady state luminescence spectroscopy and persistent luminescence decay curves, respectively. The IR spectra of the materials prepared at 250, 700, and 1500 degrees C follow the formation of BaAl(2)O(4) composition whereas the X-ray powder diffraction of compounds revealed how the hexagonal structure was obtained. The morphology of the materials at high temperatures indicated important aggregation due to sintering. The luminescence decay of the quite narrow Eu(2+) band at ca. 500 nm shows the presence of persistent luminescence after UV irradiation. The dopant (Eu(2+)) and co-clopant (Dy(3+)) concentrations affect the crystallinity and luminescence properties of the materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study aimed at evaluating the effect of increasing organic loading rates and of enzyme pretreatment on the stability and efficiency of a hybrid upflow anaerobic sludge blanket reactor (UASBh) treating dairy effluent. The UASBh was submitted to the following average organic loading rates (OLR) 0.98 Kg.m(-3).d(-1), 4.58 Kg.m(-3).d(-1), 8.89 Kg.m(-3).d(-1) and 15.73 Kg.m(-3).d(-1), and with the higher value, the reactor was fed with effluent with and without an enzymatic pretreatment to hydrolyze fats. The hydraulic detention time was 24 h, and the temperature was 30 +/- 2 degrees C. The reactor was equipped with a superior foam bed and showed good efficiency and stability until an OLR of 8.89 Kg.m(-3).d(-1). The foam bed was efficient for solid retention and residual volatile acid concentration consumption. The enzymatic pretreatment did not contribute to the process stability, propitiating loss in both biomass and system efficiency. Specific methanogenic activity tests indicated the presence of inhibition after the sludge had been submitted to the pretreated effluent It was concluded that continuous exposure to the hydrolysis products or to the enzyme caused a dramatic drop in the efficiency and stability of the process, and the single exposure of the biomass to this condition did not inhibit methane formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Contents Previously, three distinct populations of putative primordial germ cells (PGCs), namely gonocytes, intermediate cells and pre-spermatogonia, have been described in the human foetal testis. According to our knowledge, these PGCs have not been studied in any other species. The aim of our study was to identify similar PGC populations in canine embryos. First, we develop a protocol for canine embryo isolation. Following our protocol, 15 canine embryos at 21-25 days of pregnancy were isolated by ovaryhysterectomy surgery. Our data indicate that dramatic changes occur in canine embryo development and PGCs specification between 21 to 25 days of gestation. At that moment, only two PGC populations with distinct morphology can be identified by histological analyses. Cell population 1 presented round nuclei with prominent nucleolus and a high nuclear to cytoplasm ratio, showing gonocyte morphology. Cell population 2 was often localized at the periphery of the testicular cords and presented typical features of PGC. Both germ cell populations were positively immunostained with anti-human OCT-4 antibody. However, at day 25, all cells of population 1 reacted positively with OCT-4, whereas in population 2, fewer cells were positive for this marker. These two PGCs populations present morphological features similar to gonocytes and intermediate cells from human foetal testis. It is expected that a population of pre-spermatogonia would be observed at later stages of canine foetus development. We also showed that anti-human OCT-4 antibody can be useful to identify canine PGC in vivo.
Resumo:
The objective of this work was to compare two anaerobic reactor conflgurations, a hybrid upflow anaerobic sludge blanket (UASBh) reactor and an anaerobic sequencing batch reactor with immobilised biomass (ASBBR) treating dairy effluents. The reactors were fed with effluent from the milk pasteurisation process (effluent 1-E1) and later with effluent from the same process combined with the one from the cheese manufacturing (effluent 2-E2). The ASBBR reactor showed average organic matter removal efficiency of 95.2% for E1 and 93.5% for E2, while the hybrid UASB reactor showed removal efficiencies of 90.3% and 80.1% respectively.
Resumo:
In contrast to the many studies on the venoms of scorpions, spiders, snakes and cone snails, tip to now there has been no report of the proteomic analysis of sea anemones venoms. In this work we report for the first time the peptide mass fingerprint and some novel peptides in the neurotoxic fraction (Fr III) of the sea anemone Bunodosoma cangicum venom. Fr III is neurotoxic to crabs and was purified by rp-HPLC in a C-18 column, yielding 41 fractions. By checking their molecular masses by ESI-Q-Tof and MALDI-Tof MS we found 81 components ranging from near 250 amu to approximately 6000 amu. Some of the peptidic molecules were partially sequenced through the automated Edman technique. Three of them are peptides with near 4500 amu belonging to the class of the BcIV, BDS-I, BDS-II, APETx1, APETx2 and Am-II toxins. Another three peptides represent a novel group of toxins (similar to 3200 amu). A further three molecules (similar to similar to 4900 amu) belong to the group of type 1 sodium channel neurotoxins. When assayed over the crab leg nerve compound action potentials, one of the BcIV- and APETx-like peptides exhibits an action similar to the type 1 sodium channel toxins in this preparation, suggesting the same target in this assay. On the other hand one of the novel peptides, with 3176 amu, displayed an action similar to potassium channel blockage in this experiment. In summary, the proteomic analysis and mass fingerprint of fractions from sea anemone venoms through MS are valuable tools, allowing us to rapidly predict the occurrence of different groups of toxins and facilitating the search and characterization of novel molecules without the need of full characterization of individual components by broader assays and bioassay-guided purifications. It also shows that sea anemones employ dozens of components for prey capture and defense. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Chromosome microdeletions or duplications are detected in 10-20% of patients with mental impairment and normal karyotypes. A few cases have been reported of mental impairment with microdeletions comprising tumor suppressor genes. By array-CGH we detected 4 mentally impaired individuals carrying de novo microdeletions sharing an overlapping segment of similar to 180 kb in 17p13.1. This segment encompasses 18 genes, including 3 involved in cancer, namely KCTD11/REN, DLG4/PSD95, and GPS2. Furthermore, in 2 of the patients, the deletions also included TP53, the most frequently inactivated gene in human cancers. The 3 tumor suppressor genes KCTD11, DLG4, and GPS2, in addition to the GABARAP gene, have a known or suspected function in neuronal development and are candidates for causing mental impairment in our patients. Among our 4 patients with deletions in 17p13.1, 3 were part of a Brazilian cohort of 300 mentally retarded individuals, suggesting that this segment may be particularly prone to rearrangements and appears to be an important cause (similar to 1%) of mental retardation. Further, the constitutive deletion of tumor suppressor genes in these patients, particularly TP53, probably confers a significantly increased lifetime risk for cancer and warrants careful oncological surveillance of these patients. Constitutional chromosome deletions containing tumor suppressor genes in patients with mental impairment or congenital abnormalities may represent an important mechanism linking abnormal phenotypes with increased risks of cancer. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Array-CGH enables the detection of submicroscopic chromosomal deletions and duplications and leads to an accurate delineation of the imbalances, raising the possibility of correlating genotype to phenotype and mapping minimal critical regions associated with particular patterns of clinical features. We report here on four patients sharing common clinical features (psychomotor retardation, coarse facies and ocular anomalies), with proximal 5q deletions identified by oligo array-CGH. The deletions range from 5.75 to 17.26-Mb in size and occurred de novo. A common 2.63-Mb region between the deletions described here can be defined in 5q12.1 (59,390,122-62,021,754 bp bp from 5pter, hg18) and includes 12 genes. Among them, KIF2A, which encodes a kinesin superfamily protein, is a particularly interesting candidate for the phenotype, as it suppresses the growth of axonal collateral branches and is involved in normal brain development. Ocular defects, albeit unspecific, seem to be common in the 5q12.1 deletion. Identification of additional cases of deletions involving the 5q12.1 region will allow more accurate genotype-phenotype correlations. (C) 2011 Wiley-Liss, Inc.
Resumo:
The cause of hearing impairment has not been elucidated in a large proportion of patients. We screened by 1-Mb array-based comparative genomic hybridization (aCGH) 29 individuals with syndromic hearing impairment whose clinical features were not typical of known disorders. Rare chromosomal copy number changes were detected in eight patients, four de novo imbalances and four inherited from a normal parent. The de novo alterations define candidate chromosome segments likely to harbor dosage-sensitive genes related to hearing impairment, namely 1q23.3-q25.2, 2q22q23, 6p25.3 and 11q13.2-q13.4. The rare imbalances also present in normal parents might be casually associated with hearing impairment, but its role as a predisposition gene remains a possibility. Our results show that syndromic deafness is frequently associated with chromosome microimbalances (14-27%), and the use of aCGH for defining disease etiology is recommended.
Resumo:
Background: Aplasia of the mullerian ducts leads to absence of the uterine corpus, uterine cervix, and upper (superior) vagina. Patients with mullerian aplasia (MA) often exhibit additional clinical features such as renal, vertebral and cardiac defects. A number of different syndromes have been associated with MA, and in most cases its aetiology remains poorly understood. Objective and methods: 14 syndromic patients with MA and 46, XX G-banded karyotype were screened for DNA copy number changes by similar to 1 Mb whole genome bacterial artificial chromosome (BAC) array based comparative genomic hybridisation (CGH). The detected alterations were validated by an independent method and further mapped by high resolution oligo-arrays. Results: Submicroscopic genomic imbalances affecting the 1q21.1, 17q12, 22q11.21, and Xq21.31 chromosome regions were detected in four probands. Presence of the alterations in the normal mother of one patient suggests incomplete penetrance and/or variable expressivity. Conclusion: 4 of the 14 patients (29%) were found to have cryptic genomic alterations. The imbalances on 22q11.21 support recent findings by us and others that alterations in this chromosome region may result in impairment of mullerian duct development. The remaining imbalances indicate involvement of previously unknown chromosome regions in MA, and point specifically to LHX1 and KLHL4 as candidate genes.
Resumo:
Characterization of the peptide content of venoms has a number of potential benefits for basic research, clinical diagnosis, development of new therapeutic agents, and production of antiserum. Here, we use a substrate-capture assay that employs a catalytically inactive mutant of thimet oligopeptidase (EC 3.4.24.15; EP24.15) to identify novel bioactive peptides in Bothrops jararacussu venom. Of the peptides captured with inactive EP24.15 and identified by mass spectrometry, three were previously identified bradykinin-potentiating peptides (BPP), < ENWPHPQIPP (Xc), < EGGWPRPGPEIPP (XIIIa) and < EARPPHPPIPP (XIe) (where < E is a pyroglutamyl residue). In addition, we identified a novel BPP peptide containing additional AP amino acids in the C-terminus (< EARPPHPPIPPAP); this novel peptide was named BPP-AP. Next, dermal and muscle microcirculations were visualized using intravital microscopy to establish the roles of peptides BPP-XIe and BPP-AP in this process. After local administration of peptide BPP-XIe (0.5 mu g.mu L-1), leukocyte rolling flux and adhesion were increased by fivefold in post-capillary venules, without any increments in vasodilatation of arterioles compared to control experiments. In contrast, local administration of BPP-AP (0.5 mu g.mu L-1) potently induced vasodilatation of arterioles (nearly 100% increase compared with the vehicle saline control), with only a small increase in leukocyte rolling flux. Therefore, the novel BPP-AP described herein has pharmacological advantages compared to the BPP-XIe. The present study further suggests that inactive oligopeptidase EP24.15 is a useful tool for the isolation of bioactive peptides from crude biological samples.
Resumo:
The genetic diversity and phylogeographical patterns of Trypanosoma species that infect Brazilian bats were evaluated by examining 1043 bats from 63 species of seven families captured in Amazonia, the Pantanal, Cerrado and the Atlantic Forest biomes of Brazil. The prevalence of trypanosonne-infected bats, as estimated by haemoculture, was 12.9%, resulting in 77 Cultures of isolates, most morphologically identified as Trypanosoma cf. cruzi, classified by barcoding using partial sequences from ssrRNA gene into the subgenus Schizotrypanum and identified as T. cruzi (15), T cruzi marinkellei (37) or T. cf. dionisii (25). Phylogenetic analyses using nuclear ssrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) and mitochondrial cytochrome b (Cyt b) gene sequences generated three clades, which clustered together forming the subgenus Schizotrypanum. In addition to vector association, bat trypanosomes were related by the evolutionary history, ecology and phylogeography of the bats. Tryponosoma cf. dionisii trypanosomes (32.4%) infected 12 species from four bat families captured in all biomes, from North to South Brazil, and clustered with T. dionisii from Europe despite being separated by some genetic distance. Trypanosoma cruzi marinkellei (49.3%) was restricted to phyllostomid bats from Amazonia to the Pantanal (North to Central). Trypanosoma cruzi (18.2%) was found mainly in vespertilionid and phyllostomid bats from the Pantanal/Cerrado and the Atlantic Forest (Central to Southeast), with a few isolates from Amazonia. (C) 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We characterized 28 new isolates of Trypanosoma cruzi IIc (TCIIc) of mammals and triatomines from Northern to Southern Brazil, confirming the widespread distribution of this lineage. Phylogenetic analyses using cytochrome b and SSU rDNA sequences clearly separated TCIIc from TCIIa according to terrestrial and arboreal ecotopes of their preferential mammalian hosts and vectors. TCIIc was more closely related to TCIId/e, followed by TCIIa, and separated by large distances from TCIIb and TCI. Despite being indistinguishable by traditional genotyping and generally being assigned to Z3, we provide evidence that TCIIa from South America and TCIIa from North America correspond to independent lineages that circulate in distinct hosts and ecological niches. Armadillos, terrestrial didelphids and rodents, and domestic dogs were found infected by TCIIc in Brazil. We believe that, in Brazil, this is the first description of TCIIc from rodents and domestic dogs. Terrestrial triatomines of genera Panstrongylus and Triatoma were confirmed as vectors of TCIIc. Together, habitat, mammalian host and vector association corroborated the link between TCIIc and terrestrial transmission cycles/ecological niches. Analysis of ITS1 rDNA sequences disclosed clusters of TCIIc isolates in accordance with their geographic origin, independent of their host species. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We characterized 15 Trypanosoma cruzi isolates from bats captured in the Amazon, Central and Southeast Brazilian regions. Phylogenetic relationships among T. cruzi lineages using SSU rDNA, cytochrome b, and Histone H2B genes positioned all Amazonian isolates into T. cruzi I (TCI). However, bat isolates from the other regions, which had been genotyped as T. cruzi II (TC II) by the traditional genotyping method based on mini-exon gene employed in this study, Were not nested within any of the previously defined TCII sublineages, constituting a new genotype designated as TCbat. Phylogenetic analyses demonstrated that TCbat indeed belongs to T. cruzi and not to other closely related bat trypanosomes of the subgenus Schizotrypanum, and that although separated by large genetic distances TO-tat is closest to lineage TCI. A genotyping method targeting ITS1 rDNA distinguished TCbat from established T. cruzi lineages, and from other Schizotrypanum species. In experimentally infected mice, TCbat lacked virulence and yielded loss parasitaemias. Isolates of TCbat presented distinctive morphological features and behaviour in triatomines. To date, TCbat genotype wall found only in bats from anthropic environments of Central and Southeast Brazil. Our findings indicate that the complexity of T. cruzi is larger than currently known, and confirmed bats as important reservoirs and potential source of T. cruzi infections to humans.
Resumo:
Anaplasma marginale is a tick-borne pathogen of cattle responsible for the disease anaplasmosis. Data suggest that Rhipicephalus (Boophilus) microplus and R. annulatus may be the major tick vectors of A. marginale in tropical and subtropical regions of the world. In this work we demonstrated the first infection and propagation of a Brazilian isolate of A. marginale (UFMG1) in the BME26 cell line derived originally from embryos of R. (Boophilus) microplus. The establishment of A. marginale infection in a cell line derived from R. (Boophilus) microplus is relevant for studying the A. marginale/tick interface. (C) 2008 Elsevier B.V. All rights reserved.