76 resultados para Logistic regression model

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this article is to present a new method to predict the response variable of an observation in a new cluster for a multilevel logistic regression. The central idea is based on the empirical best estimator for the random effect. Two estimation methods for multilevel model are compared: penalized quasi-likelihood and Gauss-Hermite quadrature. The performance measures for the prediction of the probability for a new cluster observation of the multilevel logistic model in comparison with the usual logistic model are examined through simulations and an application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we compare three residuals to assess departures from the error assumptions as well as to detect outlying observations in log-Burr XII regression models with censored observations. These residuals can also be used for the log-logistic regression model, which is a special case of the log-Burr XII regression model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to the modified martingale-type residual in log-Burr XII regression models with censored data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bathtub-shaped failure rate function is very useful in survival analysis and reliability studies. The well-known lifetime distributions do not have this property. For the first time, we propose a location-scale regression model based on the logarithm of an extended Weibull distribution which has the ability to deal with bathtub-shaped failure rate functions. We use the method of maximum likelihood to estimate the model parameters and some inferential procedures are presented. We reanalyze a real data set under the new model and the log-modified Weibull regression model. We perform a model check based on martingale-type residuals and generated envelopes and the statistics AIC and BIC to select appropriate models. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce the log-beta Weibull regression model based on the beta Weibull distribution (Famoye et al., 2005; Lee et al., 2007). We derive expansions for the moment generating function which do not depend on complicated functions. The new regression model represents a parametric family of models that includes as sub-models several widely known regression models that can be applied to censored survival data. We employ a frequentist analysis, a jackknife estimator, and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes, and censoring percentages, several simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to evaluate the model assumptions. The extended regression model is very useful for the analysis of real data and could give more realistic fits than other special regression models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we have discussed inference aspects of the skew-normal nonlinear regression models following both, a classical and Bayesian approach, extending the usual normal nonlinear regression models. The univariate skew-normal distribution that will be used in this work was introduced by Sahu et al. (Can J Stat 29:129-150, 2003), which is attractive because estimation of the skewness parameter does not present the same degree of difficulty as in the case with Azzalini (Scand J Stat 12:171-178, 1985) one and, moreover, it allows easy implementation of the EM-algorithm. As illustration of the proposed methodology, we consider a data set previously analyzed in the literature under normality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used to check the assumptions in the model. Finally, we analyze a real data set under log-Buff XII regression models. (C) 2008 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Birnbaum-Saunders distribution has been used quite effectively to model times to failure for materials subject to fatigue and for modeling lifetime data. In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the non-null distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the Birnbaum-Saunders regression model. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters and for testing the shape parameter. Monte Carlo simulation is presented in order to compare the finite-sample performance of these tests. We also present two empirical applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Birnbaum-Saunders regression model is becoming increasingly popular in lifetime analyses and reliability studies. In this model, the signed likelihood ratio statistic provides the basis for testing inference and construction of confidence limits for a single parameter of interest. We focus on the small sample case, where the standard normal distribution gives a poor approximation to the true distribution of the statistic. We derive three adjusted signed likelihood ratio statistics that lead to very accurate inference even for very small samples. Two empirical applications are presented. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper derives the second-order biases Of maximum likelihood estimates from a multivariate normal model where the mean vector and the covariance matrix have parameters in common. We show that the second order bias can always be obtained by means of ordinary weighted least-squares regressions. We conduct simulation studies which indicate that the bias correction scheme yields nearly unbiased estimators. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Wives of pathological gamblers tend to endure long marriages despite financial and emotional burden. Difficulties in social adjustment, personality psychopathology, and comorbidity with psychiatric disorders are pointed as reasons for remaining on such overwhelming relationships. The goal was to examine the social adjustment, personality and negative emotionality of wives of pathological gamblers. Method: The sample consisted of 25 wives of pathological gamblers, mean age 40.6, SD = 9.1 from a Gambling Outpatient Unit and at GAM-ANON, and 25 wives of non-gamblers, mean age 40.8, SD = 9.1, who answered advertisements placed at the Universidade de São Paulo hospital and medical school complex. They were selected in order to approximately match demographic characteristics of the wives of pathological gamblers. Subjects were assessed by the Social Adjustment Scale, Temperament and Character Inventory, Beck Depression Inventory and State-Trait Anxiety Inventory. Results: Three variables remained in the final Multiple Logistic Regression model, wives of pathological gamblers presented greater dissatisfaction with their marital bond, and higher scores on Reward Dependence and Persistence temperament factors. Both, Wives of pathological gamblers and wives of non-gamblers presented well-structured character factors excluding personality disorders. Conclusion: This personality profile may explain wives of pathological gamblers emotional resilience and their marriage longevity. Co-dependence and other labels previously used to describe them may work as a double edged sword, legitimating wives of pathological gamblers problems, while stigmatizing them as inapt and needy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Analisar as características das quedas no grupo etário com 60 anos ou mais, com ênfase nas quedas no mesmo nível, residentes no Estado de São Paulo, a partir da análise das diferentes fontes de informação oficiais. MÉTODOS: Foram analisadas as 1.328 mortes registradas no SIM em 2007, 20.726 internações no SIH/SUS em 2008 e os 359 atendimentos realizados em 24 UEs do Estado de São Paulo em 2007. Um teste de regressão logística foi utilizado para testar associações entre variáveis nos atendimentos em emergências. RESULTADOS: O sexo masculino preponderou nas mortes (51,2 %) enquanto o sexo feminino preponderou nas internações (61,1%) e atendimentos em emergências (60,4%). O coeficiente de mortalidade foi 31/100.000 habitantes, aumentando com a idade e atingindo o valor de 110,7/100.000 habitantes na faixa de 80 anos e mais. As quedas no mesmo nível foram responsáveis pela maior proporção de mortes definidas (35%), nas internações (47,5%) e também nas emergências (66%), crescendo de importância com o aumento das faixas etárias. A residência foi o local de ocorrência em 65,8% dos casos atendidos nas emergências. Os traumatismos de cabeça assumem importância nas mortes; as fraturas de fêmur foram as lesões mais frequentes nas internações e emergências. Nas emergências, as mulheres foram 1,55 vezes significativamente mais prováveis de serem atendidas por uma queda do que pelas outras causas externas que os homens. Comparativamente à faixa de 60 a 69 anos, os indivíduos na faixa de 70 a 79 anos foram 2,10 vezes e os indivíduos de 80 anos e mais foram 2,26 vezes significativamente mais prováveis de serem atendidos por uma queda do que pelas outras causas externas. Não houve diferença estatisticamente significante quanto ao sexo ou faixa etária quando se comparou os indivíduos que sofreram quedas no mesmo nível e outros tipos de queda. CONCLUSÃO: Recomenda-se que a prevenção das quedas entre idosos entre na pauta de discussão das políticas públicas sem mais demora.