4 resultados para Herz-Type Hardy Spaces

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motivated by a characterization of the complemented subspaces in Banach spaces X isomorphic to their squares X-2, we introduce the concept of P-complemented subspaces in Banach spaces. In this way, the well-known Pelczynski`s decomposition method can be seen as a Schroeder-Bernstein type theorem. Then, we give a complete description of the Schroeder-Bernstein type theorems for this new notion of complementability. By contrast, some very elementary questions on P-complementability are refinements of the Square-Cube Problem closely connected with some Banach spaces introduced by W.T. Gowers and B. Maurey in 1997. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We first introduce the notion of (p, q, r)-complemented subspaces in Banach spaces, where p, q, r is an element of N. Then, given a couple of triples {(p, q, r), (s, t, u)} in N and putting Lambda = (q + r - p)(t + u - s) - ru, we prove partially the following conjecture: For every pair of Banach spaces X and Y such that X is (p, q, r)-complemented in Y and Y is (s, t, u)-complemented in X, we have that X is isomorphic Y if and only if one of the following conditions holds: (a) Lambda not equal 0, Lambda divides p - q and s - t, p = 1 or q = 1 or s = 1 or t = 1. (b) p = q = s = t = 1 and gcd(r, u) = 1. The case {(2, 1, 1), (2, 1,1)} is the well-known Pelczynski`s decomposition method. Our result leads naturally to some generalizations of the Schroeder-B em stein problem for Banach spaces solved by W.T. Gowers in 1996. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.