18 resultados para Hall, Basil, 1788-1844.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.
Resumo:
Previous resistively detected NMR (RDNMR) studies on the nu approximate to 1 quantum Hall state have reported a ""dispersionlike"" line shape and extremely short nuclear-spin-lattice relaxation times, observations which have been attributed to the formation of a skyrme lattice. Here we examine the evolution of the RDNMR line shape and nuclear-spin relaxation for Zeeman: Coulomb energy ratios ranging from 0.012 to 0.036. According to theory, suppression of the skyrme crystal, along with the associated Goldstone mode nuclear-spin-relaxation mechanism, is expected at the upper end of this range. However, we find that the anomalous line shape persists at high Zeeman energy, and only a modest decrease in the RDNMR-detected nuclear-spin-relaxation rate is observed.
Emergent and reentrant fractional quantum Hall effect in trilayer systems in a tilted magnetic field
Resumo:
Magnetotransport measurements in triple-layer electron systems with high carrier density reveal fractional quantum Hall effect at total filling factors nu>2. With an in-plane magnetic field we are able to control the suppression of interlayer tunneling which causes a collapse of the integer quantum Hall plateaus at nu=2 and nu=4, and an emergence of fractional quantum Hall states with increasing tilt angles. The nu=4 state is replaced by three fractional quantum Hall states with denominator 3. The state nu=7/3 demonstrates reentrant behavior and the emergent state at nu=12/5 has a nonmonotonic behavior with increasing in-plane field. We attribute the observed fractional quantum Hall plateaus to correlated states in a trilayer system.
Resumo:
The influence of microwave irradiation on dissipative and Hall resistance in high-quality bilayer electron systems is investigated experimentally. We observe a deviation from odd symmetry under magnetic-field reversal in the microwave-induced Hall resistance boolean AND R(xy), whereas the dissipative resistance boolean AND R(xx) obeys even symmetry. Studies of Delta R(xy) as a function of the microwave electric field and polarization exhibit a strong and nontrivial power and polarization dependence. The obtained results are discussed in connection to existing theoretical models of microwave-induced photoconductivity.
Resumo:
We investigate the intrinsic spin Hall effect in two-dimensional electron gases in quantum wells with two subbands, where a new intersubband-induced spin-orbit coupling is operative. The bulk spin Hall conductivity sigma(z)(xy) is calculated in the ballistic limit within the standard Kubo formalism in the presence of a magnetic field B and is found to remain finite in the B=0 limit, as long as only the lowest subband is occupied. Our calculated sigma(z)(xy) exhibits a nonmonotonic behavior and can change its sign as the Fermi energy (the carrier areal density n(2D)) is varied between the subband edges. We determine the magnitude of sigma(z)(xy) for realistic InSb quantum wells by performing a self-consistent calculation of the intersubband-induced spin-orbit coupling.
Resumo:
The influence of interlayer coupling on the formation of the quantized Hall phase at the filling factor nu=2 was studied in multilayer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to localized electrons was found in the quantized Hall phase of the isolated multi-quanturn-well structure. On the other hand, the quantized Hall phase of weakly coupled multilayers emitted an unexpected asymmetrical line similar to that observed in metallic electron systems. We demonstrated that the observed asymmetry is caused by the partial population of extended electron states formed in the insulating quantized Hall phase due to spin-assisted interlayer percolation. A sharp decrease in the single-particle scattering time associated with these extended states was observed for the filling factor nu=2. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2978194]
Resumo:
In this work, supercritical technology was used to obtain extracts from Ocimum basilicum (sweet basil) with CO(2) and the cosolvent H(2)O at 1, 10, and 20% (w/w). The raw material was obtained from hydroponic cultivation. The extract`s global yield isotherms, chemical compositions, antioxidant activity, and cost of manufacturing were determined. The extraction assays were done for pressures of 10 to 30 MPa at 303 to 323 K. The identification of the compounds present in the extracts was made by GC-MS and ESI-MS. The antioxidant activity of extracts was determined using the coupled reaction of beta-carotene and linolenic acid. At 1% of cosolvent, the largest global yield was obtained at 10 MPa and 303 K (2%, dry basis-d.b.); at 10% of cosolvent the largest global yield was obtained at 10 and 15 MPa (11%, d.b.), and at 20% of cosolvent the largest global yield was detected at 30 MPa and 303 K (24%, d.b.). The main components identified in the extracts were eugenol, germacrene-D, epi-alpha-cadinol, malic acid, tartaric acid, ramnose, caffeic acid, quinic acid, kaempferol, caffeoylquinic acid, and kaempferol 3-O-glucoside. Sweet basil extracts exhibited high antioxidant activity compared to beta-carotene. Three types of SFE extracts from sweet basil were produced, for which the estimated cost of manufacturing (class 5 type) varied from US$ 47.96 to US$ 1,049.58 per kilogram of dry extract.
Resumo:
Amblyomma varium Koch, 1844 is a Neotropical tick, known as the `sloth`s giant tick`, with records from southern Central America to Argentina. It is found almost exclusively on mammals of the families Bradypodidae and Magalonychidae (Xenarthra). Differences exist in discussions with regard to the dentition of the female hypostome being either 3/3 or 4/4. The male was also originally described as having a short spur on coxa IV, but some specimens recently collected from different Brazilian localities have this spur three times longer. These differences beg the question of whether there is more than one species included under this taxon. In order to answer this question and to clarify the taxonomic characters of this species, 258 adult specimens were examined, and a redescription of male and female based on light and scanning electron microscopy is provided. In addition, DNA was extracted from males with either a long or a short spur on coxa IV to help settle this question for future investigations on their taxonomy. The morphological study showed that the dental formula pattern for males and females is 3/3 and 4/4, respectively. When sequenced, the 12 S rDNA genes of both A. varium males with long and short spurs on coxa IV were found to be identical, indicating that the length of the spurs on coxa IV is likely to be an intraspecifically polymorphic character of this species.
Resumo:
The types of Haemaphysalis cinnabarina Koch and its junior synonym H. sanguinolenta Koch, both from State of Para, Brazil, have been studied. Although H. cinnabarina has been considered a synonym of H. punctata Canestrini and Fanzago (a Palearctic species), they were compared to another closely related species H. chordedis (Packard) (a Nearctic species). Based on the morphology and geographical distance among of H. cinnabarina, H. chordedis and H. punctata, we are reasonably sure that all are valid taxa. The lack of additional reports of H. cinnabarina is more related to few investigations in South America, mainly in Northern Brazil, rather than suggesting that it does not exist.
Resumo:
Although most raptor species are found mainly in the tropics, information on their home range and spatial requirements in the Neotropics is still scarce. In this study, we used radio telemetry to evaluate the home range and the habitat use and selection of five Roadside hawks, Rupornis magnirostris (Gmelin, 1788) in a heterogeneous landscape in southeastern Brazil. The average home range size calculated using the adaptive kernel method (95% isopleth) was 126.1ha (47.4-266.7ha), but using the minimum convex polygon method (95% isopleth) it was 143.54ha (32.6-382.3ha). The roadside hawk explored a wide variety of habitats, most of them opportunistically, as suggested in the literature. Despite this, habitat quality could influence home range size and promote habitat selection. The observation of habitat use as expected, as well as the relatively small home range size, could be related to the generalist/opportunistic behaviour of the roadside hawk.
Resumo:
In the present paper we report on the experimental electron sheet density vs. magnetic field diagram for the magnetoresistance R(xx) of a two-dimensional electron system (2DES) with two occupied subbands. For magnetic fields above 9T, we found fractional quantum Hall levels centered around the filing factor v = 3/2 in both the two occupied electric subbands. We focused specially on the fractional levels of the second subband, whose experimental values of the magnetic field B of their minima do not obey a periodicity law in 1/|B-B(c)|, where B(c) is the critical field at the filling factor v = 3/2, and we explain this fact entirely in the framework of the composite fermions theory. We use a simple theoretical model to give a possible explanation for the fact. Copyright (c) EPLA, 2011
Resumo:
We report on the measurements of the quantum Hall effect states in double quantum well structures at the filling factors v = 4N + 1 and 4N + 3, where N is the Landau index number, in the presence of the in-plane magnetic field. The quantum Hall states at these filling factors vanish and reappear several times. Repeated reentrance of the transport gap occurs due to the periodic vanishing of the tunneling amplitude in the presence of the in-plane field. When the gap vanishes, the transport becomes anisotropic. The anisotropy persist at half-odd filling factors, when bilayer quantum Hall states are recovered with increase of the tilt angle. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We have studied the quantum Hall effect in Al(x)Ga(1-x)As-double well structure with vanishing g-factor. We determined the density-magnetic field n(s) - B diagrams for the longitudinal resistance R(xx). In spite of the fact that the n(s) - B diagram for conventional GaAs double wells shows a striking similarity with the theory, we observed the strong difference between these diagrams for double wells with vanishing g-factor. We argue that the electron-electron interaction is responsible for unusual behavior of the Landau levels in such a system.
Resumo:
We investigate the spin Hall conductivity sigma (xy) (z) of a clean 2D electron gas formed in a two-subband well. We determine sigma (xy) (z) as arising from the inter-subband induced spin-orbit (SO) coupling eta (Calsaverini et al., Phys. Rev. B 78:155313, 2008) via a linear-response approach due to Rashba. By self-consistently calculating eta for realistic wells, we find that sigma (xy) (z) presents a non-monotonic (and non-universal) behavior and a sign change as the Fermi energy varies between the subband edges. Although our sigma (xy) (z) is very small (i.e., a parts per thousand(a)`` e/4 pi aEuro(3)), it is non-zero as opposed to linear-in-k SO models.
Resumo:
The influence of the interlayer coupling on formation of the quantized Hall phase at the filling factor v = 2 was studied in the multilayer GaAs/AlGaAs heterostructures The disorder broaden Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure On the other hand. the quantized Hall phase of the weakly-coupled multilayers emitted an asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry indicates a formation of the Fermi Surface in the quantized Hall phase of the multilayer electron system due to the interlayer peicolation. A sharp decrease of the single-particle scattering time associated with the extended states oil the Fermi surface was observed at the filling factor v = 2. (C) 2009 Elsevier B.V All rights reserved