51 resultados para General linear models

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we extend partial linear models with normal errors to Student-t errors Penalized likelihood equations are applied to derive the maximum likelihood estimates which appear to be robust against outlying observations in the sense of the Mahalanobis distance In order to study the sensitivity of the penalized estimates under some usual perturbation schemes in the model or data the local influence curvatures are derived and some diagnostic graphics are proposed A motivating example preliminary analyzed under normal errors is reanalyzed under Student-t errors The local influence approach is used to compare the sensitivity of the model estimates (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Often, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test, and also to a test obtained from a modified profile likelihood function. Our results generalize those in [Zucker, D.M., Lieberman, O., Manor, O., 2000. Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society B, 62,827-838] by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report simulation results which show that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presented and discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce in this paper the class of linear models with first-order autoregressive elliptical errors. The score functions and the Fisher information matrices are derived for the parameters of interest and an iterative process is proposed for the parameter estimation. Some robustness aspects of the maximum likelihood estimates are discussed. The normal curvatures of local influence are also derived for some usual perturbation schemes whereas diagnostic graphics to assess the sensitivity of the maximum likelihood estimates are proposed. The methodology is applied to analyse the daily log excess return on the Microsoft whose empirical distributions appear to have AR(1) and heavy-tailed errors. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Large inequalities of mortality by most cancers in general, by mouth and pharynx cancer in particular, have been associated to behaviour and geopolitical factors. The assessment of socioeconomic covariates of cancer mortality may be relevant to a full comprehension of distal determinants of the disease, and to appraise opportune interventions. The objective of this study was to compare socioeconomic inequalities in male mortality by oral and pharyngeal cancer in two major cities of Europe and South America. Methods: The official system of information on mortality provided data on deaths in each city; general censuses informed population data. Age-adjusted death rates by oral and pharyngeal cancer for men were independently assessed for neighbourhoods of Barcelona, Spain, and Sao Paulo, Brazil, from 1995 to 2003. Uniform methodological criteria instructed the comparative assessment of magnitude, trends and spatial distribution of mortality. General linear models assessed ecologic correlations between death rates and socioeconomic indices (unemployment, schooling levels and the human development index) at the inner-city area level. Results obtained for each city were subsequently compared. Results: Mortality of men by oral and pharyngeal cancer ranked higher in Barcelona (9.45 yearly deaths per 100,000 male inhabitants) than in Spain and Europe as a whole; rates were on decrease. Sao Paulo presented a poorer profile, with higher magnitude (11.86) and stationary trend. The appraisal of ecologic correlations indicated an unequal and inequitably distributed burden of disease in both cities, with poorer areas tending to present higher mortality. Barcelona had a larger gradient of mortality than Sao Paulo, indicating a higher inequality of cancer deaths across its neighbourhoods. Conclusion: The quantitative monitoring of inequalities in health may contribute to the formulation of redistributive policies aimed at the concurrent promotion of wellbeing and social justice. The assessment of groups experiencing a higher burden of disease can instruct health services to provide additional resources for expanding preventive actions and facilities aimed at early diagnosis, standardized treatments and rehabilitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, we introduce a class of transformed symmetric models to extend the Box and Cox models to more general symmetric models. The new class of models includes all symmetric continuous distributions with a possible non-linear structure for the mean and enables the fitting of a wide range of models to several data types. The proposed methods offer more flexible alternatives to Box-Cox or other existing procedures. We derive a very simple iterative process for fitting these models by maximum likelihood, whereas a direct unconditional maximization would be more difficult. We give simple formulae to estimate the parameter that indexes the transformation of the response variable and the moments of the original dependent variable which generalize previous published results. We discuss inference on the model parameters. The usefulness of the new class of models is illustrated in one application to a real dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss bias-corrected estimators for the regression and the dispersion parameters in an extended class of dispersion models (Jorgensen, 1997b). This class extends the regular dispersion models by letting the dispersion parameter vary throughout the observations, and contains the dispersion models as particular case. General formulae for the O(n(-1)) bias are obtained explicitly in dispersion models with dispersion covariates, which generalize previous results obtained by Botter and Cordeiro (1998), Cordeiro and McCullagh (1991), Cordeiro and Vasconcellos (1999), and Paula (1992). The practical use of the formulae is that we can derive closed-form expressions for the O(n(-1)) biases of the maximum likelihood estimators of the regression and dispersion parameters when the information matrix has a closed-form. Various expressions for the O(n(-1)) biases are given for special models. The formulae have advantages for numerical purposes because they require only a supplementary weighted linear regression. We also compare these bias-corrected estimators with two different estimators which are also bias-free to order O(n(-1)) that are based on bootstrap methods. These estimators are compared by simulation. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Joint generalized linear models and double generalized linear models (DGLMs) were designed to model outcomes for which the variability can be explained using factors and/or covariates. When such factors operate, the usual normal regression models, which inherently exhibit constant variance, will under-represent variation in the data and hence may lead to erroneous inferences. For count and proportion data, such noise factors can generate a so-called overdispersion effect, and the use of binomial and Poisson models underestimates the variability and, consequently, incorrectly indicate significant effects. In this manuscript, we propose a DGLM from a Bayesian perspective, focusing on the case of proportion data, where the overdispersion can be modeled using a random effect that depends on some noise factors. The posterior joint density function was sampled using Monte Carlo Markov Chain algorithms, allowing inferences over the model parameters. An application to a data set on apple tissue culture is presented, for which it is shown that the Bayesian approach is quite feasible, even when limited prior information is available, thereby generating valuable insight for the researcher about its experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper offers some preliminary steps in the marriage of some of the theoretical foundations of new economic geography with spatial computable general equilibrium models. Modelling the spatial economy of Colombia using the traditional assumptions of computable general equilibrium (CGE) models makes little sense when one territorial unit, Bogota, accounts for over one quarter of GDP and where transportation costs are high and accessibility low compared to European or North American standards. Hence, handling market imperfections becomes imperative as does the need to address internal spatial issues from the perspective of Colombia`s increasing involvement with external markets. The paper builds on the Centro de Estudios de Economia Regional (CEER) model, a spatial CGE model of the Colombian economy; non-constant returns and non-iceberg transportation costs are introduced and some simulation exercises carried out. The results confirm the asymmetric impacts that trade liberalization has on a spatial economy in which one region, Bogota, is able to more fully exploit scale economies vis--vis the rest of Colombia. The analysis also reveals the importance of different hypotheses on factor mobility and the role of price effects to better understand the consequences of trade opening in a developing economy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The humpback whale (Megaptera novaeangliae) population that uses Abrolhos Bank, off the east coast of Brazil as a breeding ground is increasing. To describe temporal changes in the relative abundance of humpback whales around Abrolhos, seven years (1998-2004) of whale count data were collected during July through to November. During one-hour-scans, observers determined group size within 9.3 km (5 n.m.) of a land-based observing station. A total Of 930 scans, comprising 7996 sightings of adults and 2044 calves were analysed using generalized linear models that included variables for time of day, day of the season, years and two-way interactions as possible predictors. The pattern observed was the gradual build-up and decline in whale counts within seasons. Patterns and peaks of adult and calf counts varied among years. Although fluctuation was observed, there was generally an increasing trend in adult counts among years. Calf counts increased only in 2004. These fluctuations may have been caused by some environmental conditions in humpback whales` summering grounds and also by changes in spatial-temporal concentrations in Abrolhos Bank. The general pattern observed within the study area mirrored what was observed in the whole Abrolhos Bank. Knowledge of the consistency with which humpback whales use this important nursing area should prove beneficial for designing future monitoring programmes especially related to whale watching activities around Abrolhos Archipelago.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We review some issues related to the implications of different missing data mechanisms on statistical inference for contingency tables and consider simulation studies to compare the results obtained under such models to those where the units with missing data are disregarded. We confirm that although, in general, analyses under the correct missing at random and missing completely at random models are more efficient even for small sample sizes, there are exceptions where they may not improve the results obtained by ignoring the partially classified data. We show that under the missing not at random (MNAR) model, estimates on the boundary of the parameter space as well as lack of identifiability of the parameters of saturated models may be associated with undesirable asymptotic properties of maximum likelihood estimators and likelihood ratio tests; even in standard cases the bias of the estimators may be low only for very large samples. We also show that the probability of a boundary solution obtained under the correct MNAR model may be large even for large samples and that, consequently, we may not always conclude that a MNAR model is misspecified because the estimate is on the boundary of the parameter space.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present simple matrix formulae for corrected score statistics in symmetric nonlinear regression models. The corrected score statistics follow more closely a chi (2) distribution than the classical score statistic. Our simulation results indicate that the corrected score tests display smaller size distortions than the original score test. We also compare the sizes and the powers of the corrected score tests with bootstrap-based score tests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calculations of local influence curvatures and leverage have been well developed when the parameters are unrestricted. In this article, we discuss the assessment of local influence and leverage under linear equality parameter constraints with extensions to inequality constraints. Using a penalized quadratic function we express the normal curvature of local influence for arbitrary perturbation schemes and the generalized leverage matrix in interpretable forms, which depend on restricted and unrestricted components. The results are quite general and can be applied in various statistical models. In particular, we derive the normal curvature under three useful perturbation schemes for generalized linear models. Four illustrative examples are analyzed by the methodology developed in the article.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, we give an asymptotic formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in exponencial family nonlinear models. We generalize the result by Cordeiro and Cordeiro ( 2001). The formula is given in matrix notation and is very suitable for computer implementation and to obtain closed form expressions for a great variety of models. Some special cases and two applications are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this article is to discuss the estimation of the systematic risk in capital asset pricing models with heavy-tailed error distributions to explain the asset returns. Diagnostic methods for assessing departures from the model assumptions as well as the influence of observations on the parameter estimates are also presented. It may be shown that outlying observations are down weighted in the maximum likelihood equations of linear models with heavy-tailed error distributions, such as Student-t, power exponential, logistic II, so on. This robustness aspect may also be extended to influential observations. An application in which the systematic risk estimate of Microsoft is compared under normal and heavy-tailed errors is presented for illustration.