9 resultados para GLUTAMATERGIC SYNAPTIC-TRANSMISSION

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the possible participation of TRPV1 channels in retinal apoptosis and overall development. Retinas from newborn, male albino rats were treated in vitro with capsazepine, a TRPV1 antagonist. The expression of cell cycle markers was not changed after TRPV1 blockade, whereas capsazepine reduced the number of apoptotic cells throughout the retina,increased ERK1/2 and p38 phosphorylation and slightly reduced JNK phosphorylation. The expression of BAD, Bcl-2, as well as integral and cleaved capsase-3 were similar in all experimental conditions. Newborn rats were kept for 2 months after receiving high doses of capsazepine. In their retinas, calbindin and parvalbumin protein levels were upregulated, but only the number of amacrine-like, parvalbumin-positive cells was increased. The numbers of calretinin, calbindin, ChAT, vimentin, PKC-alpha and GABA-positive cells were similar in both conditions. Protein expression of synapsin Ib was also increased in the retinas of capsazepine-treated rats. Calretinin, vimentin, GFAP, synapsin Ia, synaptophysin and light neurofilament protein levels were not changed when compared to control values. Our results indicate that TRPV1 channels play a role in the control of the early apoptosis that occur during retinal development, which might be dependent on MAPK signaling. Moreover, it seems that TRPV1 function might be important for neuronal and synaptic maturation in the retina. (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here the protein expression of TRPV1 receptor in axotomized rat retinas and its possible participation in mechanisms involved in retinal ganglion cell (RGC) death. Adult rats were subjected to unilateral, intraorbital axotomy of the optic nerve, and the retinal tissue was removed for further processing. TRPV1 total protein expression decreased progressively after optic nerve transection, reaching 66.2% of control values 21 days after axotomy. The number of cells labeled for TRPV1 in the remnant GCL decreased after 21 days post-lesion (to 63%). Fluoro-jade B staining demonstrated that the activation of TRPV1 in acutely-lesioned eyes elicited more intense neuronal degeneration in the GCL and in the inner nuclear layer than in sham-operated retinas. A single intraocular injection of capsazepine (100 mu M), a TRPV1 antagonist, 5 days after optic nerve lesion, decreased the number of GFAP-expressing Muller cells (72.5% of control values) and also decreased protein nitration in the retinal vitreal margin (75.7% of control values), but did not affect lipid peroxidation. Furthermore, retinal explants were treated with capsaicin (100 mu M), and remarkable protein nitration was then present, which was reduced by blockers of the constitutive and inducible nitric oxide synthases (7-NI and aminoguanidine, respectively). TRPV1 activation also increased GFAP expression, which was reverted by both TRPV1 antagonism with capsazepine and by 7-NI and aminoguanidine. Given that Muller cells do not express TRPV1, we suppose that the increased GFAP expression in these cells might be elicited by TRPV1 activation and by its indirect effect upon nitric oxide overproduction and peroxynitrite formation. We incubated Fluorogold pre-labeled retinal explants in the presence of capsazepine (1 mu M) during 48 h. The numbers of surviving RGCs stained with fluorogold and the numbers of apoptotic cells in the GCL detected with TUNEL were similar in lesioned and control retinas. We conclude that TRPV1 receptor expression decreased after optic nerve injury due to death of TRPV1-containing cells. Furthermore, these data indicate that TRPV1 might be involved in intrinsic protein nitration and Muller cell reaction observed after optic nerve injury. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study we investigated energy metabolism in the mdx mouse brain. To this end, prefrontal cortex, cerebellum, hippocampus, striatum, and cortex were analyzed. There was a decrease in Complex I but not in Complex 11 activity in all structures. There was an increase in Complex III activity in striatum and a decrease in Complex IV activity in prefrontal cortex and striatum. Mitochondrial creatine kinase activity was increased in hippocampus, prefrontal cortex, cortex, and striatum. Our results indicate that there is energy metabolism dysfunction in the mdx mouse brain. Muscle Nerve 41: 257-260, 2010

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne`s muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (I) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum: and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brain dystrophin is enriched in the postsynaptic densities of pyramidal neurons specialized regions of the subsynaptic cytoskeletal network, which are critical for synaptic transmission and plasticity. Lack of dystrophin in brain structures have been involved with impaired cognitive functions. The brain-derived neurotrophic factor (BDNF) is a regulator of neuronal survival, fast synaptic transmission, and activity-dependent synaptic plasticity. The present study investigated BDNF protein levels by Elisa analysis in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx (n = 5) and normal C57BL10 mouse (n = 5). We observed that the mdx mouse display diminution in BDNF levels in striatum (t = 6.073; df = 6; p = 0.001), while a tendency of decrease in BDNF levels was observed in the prefrontal cortex region (t = 1.962; df = 6; p = 0.096). The cerebellum (t = 1.258; df = 7; p = 0.249), hippocampus (t = 0.631; df = 7; p = 0.548) and cortex (t = 0.572; df = 7; p = 0.586) showed no significant alterations as compared to wt mouse. In conclusion, we demonstrate that only striatum decreased BDNF levels compared with wild-type (wt) mouse, differently to the other areas of the brain. This dystrophin deficiency may be affecting BDNF levels in striatum and contributing, in part, in memory storage and restoring. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chicken (Gallus gallus) brains were used to investigate the typology and the immunolabel pattern for the subunits composing the AMPA-type glutamate receptors (GluR) of hindbrain neurons of the dorsal (dND) and ventral nuclei (vND) of the Deiter`s vestibular complex (CD), which is the avian correspondent of the lateral vestibular nucleus (LVN) of mammals. Our results revealed that neurons of both divisions were poor in GluR1. The vND, the GluR2/3+ and GluR4+ label presented no area or neuronal size preference, although most neurons were around 75%. The dND neurons expressing GluR2/3 are primarily around 85%, medium to large-sized 85%, and predominantly 60% located in the medial portion of the rostral pole and in the lateral portion of the caudal pole. The majority of dND neurons containing GluR4 are also around 75%, larger (70% are large and giant), exhibiting a distribution that seems to be complementary to that of GluR2/3+ neurons. This distinct arrangement indicates functional differences into and between the DC nuclei, also signaling that such variation could be attributed to the diverse nature of the subunit composition of the GluRs. Discussion addresses the morphological and functional correlation of the avian DC with the LVN of mammals in addition to the high morphological correspondence, To include these data into the modern comparative approach we propose to adopt a similar nomenclature for the avian divisions dND and vND that could be referred as dLVN and vLVN. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (nAChR) exert pivotal roles in synaptic transmission, neuroprotection and differentiation. Particularly, homomeric alpha 7 receptors participate in neurite outgrowth, presynaptic control of neurotransmitter release and Ca(2+) influx. However, the study of recombinant alpha 7 nAChRs in transfected cell lines is difficult due to low expression of functional receptor channels. We show that PC12 pheochromocytoma cells induced to differentiation into neurons are an adequate model for studying differential nAChR gene expression and receptor activity. Whole-cell current recording indicated that receptor responses increased during the course of differentiation. Transcription of mRNAs coding for alpha 3, alpha 5, alpha 7, beta 2 and beta 4 subunits was present during the course of differentiation, while mRNAs coding for alpha 2, alpha 4 and beta 3 subunits were not expressed in PC12 cells. alpha 7 subunit expression was highest following 1 day of induction to differentiation. Activity of alpha 7 nAChRs, however, was most elevated on day 2 as revealed by inhibition experiments in the presence of 10 nM methyllycaconitine, rapid current decay and receptor responsiveness to the alpha 7 agonist choline. Increased alpha 7 receptor activity was noted when PC12 were induced to differentiation in the presence of choline, confirming that chronic agonist treatment augments nAChR activity. In summary, PC12 cells are an adequate model to study the role and pharmacological properties of this receptor during neuronal differentiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relative contribution of the pre- and post-synaptic effects to the neostigmine-induced recovery of neuromuscular transmission blocked by vecuronium was studied. A conjunction of myographical and electrophysiological techniques was employed. The preparation was the sciatic nerve-extensor digitorum longus muscle of the rat, in vitro. The physiological variables recorded were nerve-evoked twitches (generated at 0.1 Hz), tetanic contractions (generated at 50 Hz) and end-plate potentials (epps), generated in trains of 50 Hz. The epps were analyzed in: amplitude of first epp in the train; mean amplitude of the 30th to the 59th epp in the train (epps-plateau); half-decay time of the epp; early tetanic rundown of epps in the train; plateau tetanic rundown of epps in the train; quantal content of the epps and quantal size. In myographical experiments, a concentration of vecuronium was found (0.8 mu m) that affected both twitches and tetanic contractions and a concentration of neostigmine was found (0.048 mu m) that completely restored the twitch affected by vecuronium. The cellular effects of vecuronium and neostigmine, studied alone or in association, in the above-mentioned concentrations, were scrutinized by means of electrophysiological techniques. These showed that vecuronium alone decreased the peak amplitude, the quantal content of epps and the quantal size and reinforced the tetanic rundown of epps. Neostigmine alone increased the peak amplitude, the quantal content and the half-decay time of the epps. When employed in the presence of vecuronium, neostigmine increased both the quantal content of the epps (via a presynaptic effect) and the half-decay time of the epps (via a postsynaptic effect). Seeing the pre- and the post-synaptic effects of neostigmine were of similar magnitude, they permit to conclude that both these effects contributed significantly to the restoration by neostigmine of the neuromuscular transmission blocked by vecuronium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synaptic modulation by activity-dependent changes constitutes a cellular mechanism for neuronal plasticity. However, it is not clear how the complete lack of neuronal signaling specifically affects elements involved in the communication between neurons. In the retina, it is now well established that both chemical and electrical synapses are essential to mediate the transmission of visual signaling triggered by the photoreceptors. In this study, we compared the expression of synaptic proteins in the retinas of wild-type (WT) vs. rd/rd mice, an animal model that displays inherited and specific ablation of photoreceptors caused by a mutation in the gene encoding the beta-subunit of rod cGMP-phosphodiesterase (Pde6b(rd1)). We specifically examined the expression of connexins (Cx), the proteins that form the gap junction channels of electrical synapses, in addition to synaptophysin and synapsin 1, which are involved in the release of neurotransmitters at chemical synapses. Our results revealed that Cx36 gene expression levels are lower in the retinas of rd/rd when compared with WT. Confocal analysis indicated that Cx36 immunolabeling almost disappeared in the outer plexiform layer without significant changes in protein distribution within the inner plexiform layer of rd/rd retinas. Likewise, synaptophysin expression remarkably decreased in the outer plexiform layer of rd/rd retinas, and this down-regulation was also associated with diminished transcript levels. Furthermore, we observed down-regulation of Cx57 gene expression in rd/rd retinas when compared with WT and also changes in protein distribution. Interestingly, Cx45 and synapsin I expression in rd/rd retinas showed no noticeable changes when compared with WT. Taken together, our results revealed that the loss of photoreceptors leads to decreased expression of some synaptic proteins. More importantly, this study provides evidence that neuronal activity regulates, but is not essential to maintain, the expression of synaptic elements. (c) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.