167 resultados para Functional composites
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Two different commercial crosslinked resins (Amberlite GT73 and Amberlite IRC748) were employed for anchoring silver. The -SH and -N(CH2COOH)2 groups, respectively, present on these resins were used for Ag+ chelation from an aqueous solution. The Ag+ ions were reduced with three different reductants: hydrazine, hydroxylamine, and formaldehyde (under an alkaline pH). The produced composites were characterized with thermogravimetry/differential thermogravimetry and scanning electron microscopy combined with a backscattered scanning electron detector. Energy-dispersive X-ray spectroscopy coupled to scanning electron microscopy allowed the observation of submicrometer particles of silver, and chemical microanalysis of emitted X-rays revealed the presence of metal on the internal and external surfaces of the composite microspheres. The amount of incorporated silver was determined by titration. The antibacterial activity of the silver/resin composites was determined toward 10(3)-10(7) cells/mL dilutions of the auxotrophic AB1157 Escherichia coli strain; the networks containing anchored submicrometer silver particles were completely bactericidal within a few minutes because of the combined action of silver and functional groups of the resins. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.
Resumo:
OBJECTIVES: The purpose of this study was to assess the color change of three types of composite resins exposed to coffee and cola drink, and the effect of repolishing on the color stability of these composites after staining. MATERIALS AND METHODS: Fifteen specimens (15 mm diameter and 2 mm thick) were fabricated from microhybrid (Esthet-X; Dentsply and Filtek Z-250; 3M ESPE) and high-density hybrid (Surefil; Dentsply) composites, and were finished and polished with aluminum oxide discs (Sof-Lex; 3M ESPE). Color of the specimens was measured according to the CIE L*a*b* system in a refection spectrophotometer (PCB 6807; BYK Gardner). After baseline color measurements, 5 specimens of each resin were immersed in different staining solutions for 15 days: G1 - distilled water (control), G2 - coffee, G3 - cola soft drink. Afterwards, new color measurement was performed and the specimens were repolished and submitted to new color reading. Color stability was determined by the difference (ΔE) between the coordinates L*, a*, and b* obtained from the specimens before and after immersion into the solutions and after repolishing. RESULTS: There was no statistically signifcant difference (ANOVA, Tukey's test; p>0.05) among the ΔE values for the different types of composites after staining or repolishing. For all composite resins, coffee promoted more color change (ΔE>3.3) than distilled water and the cola soft drink. After repolishing, the ΔE values of the specimens immersed in coffee decreased to clinically acceptable values (ΔE<3.3), but remained signifcantly higher than those of the other groups. CONCLUSIONS: No signifcant difference was found among composite resins or between color values before and after repolishing of specimens immersed in distilled water and cola. Immersing specimens in coffee caused greater color change in all types of composite resins tested in this study and repolishing contributed to decrease staining to clinically acceptable ΔE values.
Resumo:
Owing to improvements in its mechanical properties and to the availability of shade and translucence resources, resin composite has become one of the most widely used restorative materials in present day Dentistry. The aim of this study was to assess the relation between the surface hardness of seven different commercial brands of resin composites (Charisma, Fill Magic, Master Fill, Natural Look, Opallis, Tetric Ceram, and Z250) and the different degrees of translucence (translucid, enamel and dentin). Vickers microhardness testing revealed significant differences among the groups. Z250 was the commercial brand that showed the best performance in the hardness test. When comparing the three groups assessed within the same brand, only Master Fill and Fill Magic presented statistically significant differences among all of the different translucencies. Natural Look was the only one that showed no significant difference among any of the three groups. Charisma, Opallis, Tetric Ceram and Z250 showed significant differences among some of the tested groups. Based on the results found in this study, it was not possible to establish a relation between translucence and the microhardness of the resin composites assessed. Depending on the material assessed, however, translucence variation did affect the microhardness values of the resin composites.
Resumo:
The use of composite resins in dentistry is well accepted for restoring anterior and posterior teeth. Many polishing protocols have been evaluated for their effect on the surface roughness of restorative materials. This study compared the effect of different polishing systems on the surface roughness of microhybrid composites. Thirty-six specimens were prepared for each composite $#91;Charisma® (Heraeus Kulzer), Fill Magic® (Vigodent), TPH Spectrum® (Dentsply), Z100® (3M/ESPE) and Z250® (3M/ESPE)] and submitted to surface treatment with Enhance® and PoGo® (Dentsply) points, sequential Sof-Lex XT® aluminum oxide disks (3M/ESPE), and felt disks (TDV) combined with Excel® diamond polishing paste (TDV). Average surface roughness (Ra) was measured with a mechanical roughness tester. The data were analyzed by two-way ANOVA with repetition of the factorial design and the Tukey-Kramer test (p<0.01). The F-test result for treatments and resins was high (p<0.0001 for both), indicating that the effect of the treatment applied to the specimen surface and the effect of the type of resin on surface roughness was highly significant. Regarding the interaction between polishing system and type of resin used, a p value of 0.0002 was obtained, indicating a statistically significant difference. A Ra of 1.3663 was obtained for the Sof-Lex/TPH Spectrum interaction. In contrast, the Ra for the felt disk+paste/Z250 interactions was 0.1846. In conclusion, Sof-Lex polishing system produced a higher surface roughness on TPH Spectrum resin when compared to the other interactions.
Resumo:
The objective of this study was to evaluate the flexural strength (σf) and hardness (H) of direct and indirect composites, testing the hypotheses that direct resin composites produce higher σf and H values than indirect composites and that these properties are positively related. Ten bar-shaped specimens (25 mm x 2 mm x 2 mm) were fabricated for each direct [D250 - Filtek Z250 (3M-Espe) and D350 - Filtek Z350 (3M-Espe)] and indirect [ISin - Sinfony (3M-Espe) and IVM - VitaVM LC (Vita Zahnfabrik)] materials, according to the manufacturer's instructions and ISO4049 specifications. The σf was tested in three-point bending using a universal testing machine (EMIC DL 2000) at a crosshead speed of 0.5 mm/min (ISO4049). Knoop hardness (H) was measured on the specimens' fragments resultant from the σf test and calculated as H = 14.2P/l², where P is the applied load (0.1 kg; dwell time = 15 s) and l is the longest diagonal of the diamond shaped indent (ASTM E384). The data were statistically analyzed using Anova and Tukey tests (α = 0.05). The mean σf and standard deviation values (MPa) and statistical grouping were: D250 - 135.4 ± 17.6a; D350 - 123.7 ± 11.1b; ISin - 98.4 ± 6.4c; IVM - 73.1 ± 4.9d. The mean H and standard deviation values (kg/mm²) and statistical grouping were: D250 - 98.12 ± 1.8a; D350 - 86.5 ± 1.9b; ISin - 28.3 ± 0.9c; IVM - 30.8 ± 1.0c. The direct composite systems examined produce higher mean σf and H values than the indirect composites, and the mean values of these properties were positively correlated (r = 0.91), confirming the study hypotheses.
Resumo:
In the present study, composition, functional properties and sensory characteristics of Mozzarella cheese produced from milk with somatic cell counts (SCC) at low (<200,000 cells/mL), intermediate (≈400,000 cells/mL) and high (>800,000 cells/mL) levels were investigated. Three batches of cheese were produced for each SCC category. The cheeses were vacuum packed in plastic bags and analysed after 2, 9, 16, 23 and 30 days of storage at 4ºC. SCC level did not affect the moisture, fat, total protein and ash content, mesophilic and psychrotrophic bacteria, and sensory parameters of Mozzarella cheese. However, meltability increased in cheese manufactured from high SCC milk. Results indicated that raw milk used to produce Mozzarella cheese should not contain high SCC (>800,000 cells/mL) in order to avoid changes in the functional properties of the Mozzarella cheese.
Resumo:
The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.
Resumo:
Phytoplankton may function as a "sensor" of changes in aquatic environment and responds rapidly to such changes. In freshwaters, coexistence of species that have similar ecological requirements and show the same environmental requirements frequently occurs; such species groups are named functional groups. The use of phytoplankton functional groups to evaluate these changes has proven to be very useful and effective. Thus, the aim of this study was to evaluate the occurrence of functional groups of phytoplankton in two reservoirs (Billings and Guarapiranga) that supply water to millions of people in São Paulo city Metropolitan Area, southeastern Brazil. Surface water samples were collected monthly and physical, chemical and biological (quantitative and qualitative analyses of the phytoplankton) were performed. The highest biovolume (mm³.L-1) of the descriptor species and functional groups were represented respectively by Anabaena circinalis Rabenh. (H1), Microcystis aeruginosa (Kützing) Kützing (L M/M) and Mougeotia sp. (T) in the Guarapiranga reservoir and Cylindrospermopsis raciborskii (Wolosz.) Seen. and Subba Raju (S N), Microcystis aeruginosa and M. panniformis Komárek et al. (L M/M), Planktothrix agardhii (Gom.) Anagn. and Komárek and P. cf. clathrata (Skuja) Anagn. and Komárek (S1) in the Billings reservoir. The environmental factors that most influenced the phytoplankton dynamics were water temperature, euphotic zone, turbidity, conductivity, pH, dissolved oxygen, nitrate and total phosphorous.
Resumo:
Spastic paraplegia, optic atrophy, and neuropathy (SPOAN) is an autosomal recessive complicated form of hereditary spastic paraplegia, which is clinically defined by congenital optic atrophy, infancy-onset progressive spastic paraplegia and peripheral neuropathy. In this study, which included 61 individuals (age 5-72 years, 42 females) affected by SPOAN, a comprehensive motor and functional evaluation was performed, using modified Barthel index, modified Ashworth scale, hand grip strength measured with a hydraulic dynamometer and two hereditary spastic paraplegia scales. Modified Barthel index, which evaluate several functional aspects, was more sensitive to disclose disease progression than the spastic paraplegia scales. Spasticity showed a bimodal distribution, with both grades 1 (minimum) and 4 (maximum). Hand grip strength showed a moderate inverse correlation with age. Combination of early onset spastic paraplegia and progressive polyneuropathy make SPOAN disability overwhelming.
Resumo:
The n→π* absorption transition of formaldehyde in water is analyzed using combined and sequential classical Monte Carlo (MC) simulations and quantum mechanics (QM) calculations. MC simulations generate the liquid solute-solvent structures for subsequent QM calculations. Using time-dependent density functional theory in a localized set of gaussian basis functions (TD-DFT/6-311++G(d,p)) calculations are made on statistically relevant configurations to obtain the average solvatochromic shift. All results presented here use the electrostatic embedding of the solvent. The statistically converged average result obtained of 2300 cm-1 is compared to previous theoretical results available. Analysis is made of the effective dipole moment of the hydrogen-bonded shell and how it could be held responsible for the polarization of the solvent molecules in the outer solvation shells.
Resumo:
The aim of this study was to verify the influence of an experimental heat treatment (170ºC/10 min) using a casting furnace on the mechanical properties (hardness and flexural strength) of 2 commercial direct resin composites (TPH Spectrum and Filtek P60) compared to a commercial indirect resin system (BelleGlass). Heat treatment temperature was determined after thermal characterization by thermogravimetry (TG) and differential scanning calorimetry (DSC). Data was analyzed by ANOVA and Tukey's test at 5% significance level. There was statistical significance for the main factor heat treatment (p=0.03) and composite (p=0.02), for flexural strength. For Knoop hardness, only the main factor composite was statistically significant (p=0.00). P60 presented higher hardness than TPH. No statistically significant correlation between mechanical properties tested was detected. Based on these results, it was possible to conclude that heat treatment influenced flexural strength of direct composites, while it was not observed for hardness. The association of direct composites with a simple post-cure heat treatment may be an alternative for current indirect composite systems, although more studies are needed to verify other properties of the composites for this application.
Resumo:
First-principles scalar relativistic calculations in supercells of 16 atoms are used to represent disordered B2 ordering of Fe(3)Ga in order to observe the effect of Ga-Ga pairs on the electronic structure of this alloy. From a comparison with pure bcc Fe it is observed that the energy position and occupation of e(g) and t(2g) states are largely affected by the Ga-Ga pairs and strengthened intraplane interactions takes place. The results show that a larger hybridization of the conduction band is in the source of the magnetostriction enhancement experimentally observed in Galfenol. (C) 2011 American Institute of Physics. [doi:10.1063/1.3525609]