32 resultados para Excitation energies

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a large-scale systematics of charge densities, excitation energies and deformation parameters For hundreds of heavy nuclei The systematics is based on a generalized rotation vibration model for the quadrupole and octupole modes and takes into account second-order contributions of the deformations as well as the effects of finite diffuseness values for the nuclear densities. We compare our results with the predictions of classical surface vibrations in the hydrodynamical approximation. (C) 2010 Elsevier B V All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The basic optical properties of PPV-based polymers have been extensively studied due to their potential technological applications. However, a detailed investigation of electronic processes following photoexcitation in the ultraviolet is still lacking. We report photoluminescence measurements on poly(1-methoxy-4-ethylhexyloxy-paraphenylenevinylene) - MEH-PPV in the 2.0-5.6 eV range, with excitation up to 5.6 eV. The photoluminescence spectra lineshape is independent of excitation energy. The photoluminescence efficiency is high for energies well below the absorption maximum due to near-resonant excitation of the longest conjugated segments which are responsible for the PL It decreases strongly for excitation energies in the range 2.1-2.5 eV (up to the absorption maximum) and slightly from 2.5 to 5.6 eV. The results indicate that states excited in the ultraviolet rapidly relax nonradiatively to the lowest state, from where the usual luminescence occurs. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The absorption spectrum of the acid form of pterin in water was investigated theoretically. Different procedures using continuum, discrete, and explicit models were used to include the solvation effect on the absorption spectrum, characterized by two bands. The discrete and explicit models used Monte Carlo simulation to generate the liquid structure and time-dependent density functional theory (B3LYP/6-31G+(d)) to obtain the excitation energies. The discrete model failed to give the correct qualitative effect on the second absorption band. The continuum model, in turn, has given a correct qualitative picture and a semiquantitative description. The explicit use of 29 solvent molecules, forming a hydration shell of 6 angstrom, embedded in the electrostatic field of the remaining solvent molecules, gives absorption transitions at 3.67 and 4.59 eV in excellent agreement with the S(0)-S(1) and S(0)-S(2) absorption bands at of 3.66 and 4.59 eV, respectively, that characterize the experimental spectrum of pterin in water environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2371-2377, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the effects of several approximations commonly used in coupled-channel analyses of fusion and elastic scattering cross sections. Our calculations are performed considering couplings to inelastic states in the context of the frozen approximation, which is equivalent to the coupled-channel formalism when dealing with small excitation energies. Our findings indicate that, in some cases, the effect of the approximations on the theoretical cross sections can be larger than the precision of the experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigates the two-photon absorption spectrum of perylene tetracarboxylic derivatives using the white-light continuum Z-scan technique. Perylene derivatives present relatively high two-photon absorption cross-section, which makes them attractive for applications in photonics. Because of the spectral resolution of the white-light continuum Z-scan, we were able to observe a well defined structure in the two-photon absorption spectrum, composed by two distinct peaks. These peaks, as well as the resonant enhancement of the nonlinearity, were modeled using the sum-over-states approach considering a four-level energy diagram with two final two-photon states. The existence of such states was confirmed using the response function formalism within the DFT framework. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solvatochromic shift of the lowest singlet it pi -> pi* electronic transition in the all-trans, cis-13, cis-11, cis-9, and cis-7 retinal isomers were computed under the influence of water, methanol, and benzene solvents. Excitation energies were calculated in gas phase and in solution. The calculations in solution were performed considering the sequential Monte Carlo (MC) /Quantum Mechanical approach. The MC simulations were performed considering the full retinal isomer molecules and 900 water molecules, 900 methanol, or 400 benzene ones. The OPLS/AA parametrization was chosen for retinal, methanol, and benzene molecules and the SPC model was used for water one. From the MC calculations 100 independent configurations were selected, with 100 solvent molecules in thermodynamical equilibrium at T = 298.15 K. Average point-charges were obtained from those independent configurations for water, methanol, and benzene solvent. TDDFT and CASSCF//CASPT2 methodologies were used to compute the vertical excitation energy of the retinal isomers in different environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2076-2087, 2010

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the amine sulfur dioxide chemistry was well characterized in the past both experimentally and theoretically, no systematic Raman spectroscopic study describes the interaction between N,N-dimethylaniline (DMA) and sulfur dioxide (SO(2)). The formation of a deep red oil by the reaction of SO(2) with DMA is an evidence of the charge transfer (CT) nature of the DMA-SO(2) interaction. The DMA -SO(2) normal Raman spectrum shows the appearance of two intense bands at 1110 and 1151 cm(-1), which are enhanced when resonance is approached. These bands are assigned to nu(s)(SO(2)) and nu(phi-N) vibrational modes, respectively, confirming the interaction between SO(2) and the amine via the nitrogen atom. The dimethyl group steric effect favors the interaction of SO(2) with the ring pi electrons, which gives rise to a pi-pi* low-energy CT electronic transition, as confirmed by time-dependent density functional theory (TDDFT) calculations. In addition, the calculated Raman DMA-SO(2) spectrum at the B3LYP/6-311++g(3df,3pd) level shows good agreement with the experimental results (vibrational wavenumbers and relative intensities), allowing a complete assignment of the vibrational modes. A better understanding of the intermolecular interactions in this model system can be extremely useful in designing new materials to absorb, detect, or even quantify SO(2). Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solvatochromic and ionochromic effects of the iron(II)bis(1,10-phenanthroline)dicyano (Fe(phen)(2)(CN)(2)) complex were investigated by means of combined DFT/TDDFT calculations using the PBE and B3LYP functionals. Extended solvation models of Fe(phen)(2)(CN)(2) in acetonitrile and aqueous solution, as well as including interaction with Mg(2+), were constructed. The calculated vertical excitation energies reproduce well the observed solvatochromism in acetonitrile and aqueous solutions, the ionochromism in acetonitrile in the presence of Mg(2+), and the absence of ionochromic effect in aqueous solution. The vertical excitation energies and the nature of the transitions were reliably predicted after inclusion of geometry relaxation upon aqueous micro- and global solvation and solvent polarization effect in the TDDFT calculations. The two intense UV-vis absorption bands occurring for all systems studied are interpreted as transitions from a hybrid Fe(II)(d)/cyano N(p) orbital to a phenanthroline pi* orbital rather than a pure metal-to-ligand-charge transfer (MLCT). The solvatochromic and ionochromic blue band shifts of Fe(phen)(2)(CN)(2) were explained with preferential stabilization of the highest occupied Fe(II)(d)/cyano N(p) orbitals as a result of specific interactions with water solvent molecules or Mg(2+) ions in solution. Such interactions occur through the CN(-) groups in the complex, and they have a decisive role for the observed blue shifts of UV-vis absorption bands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The diazocarbene radical, CNN, and the ions CNN(+) and CNN(-) were investigated at a high level of theory. Very accurate structural parameters for the states X(3)Sigma(-) and A(3)Pi of CNN, and X(2)Pi of both CNN(+) and CNN(-) were obtained with the UCCSD(T) method using correlated-consistent basis functions with extrapolations to the complete basis set limit, with valence only and also with all electrons correlated. Harmonic and anharmonic frequencies were obtained for all species and the Renner parameter and average frequencies evaluated for the Pi states. At the UCCSD(T)/CBS(T-5) level of theory, Delta(f)H(0 K) = 138.89 kcal/mol and Delta(f)H(298 K) = 139.65 kcal/mol were obtained for diazocarbene; for the ionization potential and the electron affinity of CNN, 10.969 eV (252.95 kcal/mol), and 1.743 eV (40.19 kcal/mol), respectively, are predicted. Geometry optimization was also carried out with the CASSCF/MRCI/CBS(T-5) approach for the states X(3)Sigma(-) A(3)Pi, and a(1)Delta of CNN, and with the CASSCF/MRSDCI/aug-cc-pVTZ approach for the states b(1)Sigma(+), c(1)Pi, d(1)Sigma(-), and B(3)Sigma(-), and excitation energies (T(e)) evaluated. Vertical energies were calculated for 15 electronic states, thus improving on the accuracy of the five transitions already described, and allowing for a reliable overview of a manifold of other states, which is expected to guide future spectroscopic experiments. This study corroborates the experimental assignment for the vertical transition X (3)Sigma(-) <- E (3)Pi.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New basis sets of the atomic natural orbital (ANO) type have been developed for the lanthanide atoms La-Lu. The ANOs have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive ions, and the atom in an electric field. Scalar relativistic effects are included through the use of a Douglas-Kroll-Hess Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second-order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies and some excitation energies. Computed ionization energies have an accuracy better than 0.1 eV in most cases. Two molecular applications are inluded as illustration: the cerium diatom and the LuF3 molecule. In both cases it is shown that 4f orbitals are not involved in the chemical bond in contrast to an earlier claim for the latter molecule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We employed the Density Functional Theory along with small basis sets, B3LYP/LANL2DZ, for the study of FeTIM complexes with different pairs of axial ligands (CO, H(2)O, NH(3), imidazole and CH(3)CN). These calculations did not result in relevant changes of molecular quantities as bond lengths, vibrational frequencies and electronic populations supporting any significant back-donation to the carbonyl or acetonitrile axial ligands. Moreover, a back-donation mechanism to the macrocycle cannot be used to explain the observed changes in molecular properties along these complexes with CO or CH(3)CN. This work also indicates that complexes with CO show smaller binding energies and are less stable than complexes with CH(3)CN. Further, the electronic band with the largest intensity in the visible region (or close to this region) is associated to the transition from an occupied 3d orbital on iron to an empty pi* orbital located at the macrocycle. The energy of this Metal-to-Ligand Charge Transfer (MLCT) transition shows a linear relation to the total charge of the macrocycle in these complexes as given by Mulliken or Natural Population Analysis (NPA) formalisms. Finally, the macrocycle total charge seems to be influenced by the field induced by the axial ligands. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full description of the 5.5-yr low excitation events in. Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the slow variation component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind wind collision shock-cone orientation, angular opening and gaseous content. The second, the collapse component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High-energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low-ionization state for more than six months. High-energy phenomena are sensitive only to the collapse, low energy only to the slow variation and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e. g. shell ejection or accretion on to the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in Fe II lambda 6455 and He I lambda 7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the transition to spatio-temporal chaos in spatially extended nonlinear dynamical systems possessing an invariant subspace with a low-dimensional attractor. When the latter is chaotic and the subspace is transversely stable we have a spatially homogeneous state only. The onset of spatio-temporal chaos, i.e. the excitation of spatially inhomogeneous modes, occur through the loss of transversal stability of some unstable periodic orbit embedded in the chaotic attractor lying in the invariant subspace. This is a bubbling transition, since there is a switching between spatially homogeneous and nonhomogeneous states with statistical properties of on-off intermittency. Hence the onset of spatio-temporal chaos depends critically both on the existence of a chaotic attractor in the invariant subspace and its being transversely stable or unstable. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a detailed study on the optical properties of two GaAs/Al(0.35)Ga(0.65)As coupled double quantum wells (CDQWs) with inter-well barriers of different thicknesses, by using photoluminescence (PL) spectroscopy. The two CDQWs were grown in a single sample, assuring very similar experimental conditions for measurements of both. The PL spectrum of each CDQW exhibits two recombination channels which can be accurately identified as the excitonic e(1)-hh(1) transitions originated from CDQWs of different effective dimensions. The PL spectra characteristics and the behavior of the emissions as a function of temperature and excitation power are interpreted in the scenario of the bimodal interface roughness model, taking into account the exciton migration between the two regions considered in this model and the difference in the potential fluctuation levels between those two regions. The details of the PL spectra behavior as a function of excitation power are explained in terms of the competition between the band gap renormalization (BGR) and the potential fluctuation effects. The results obtained for the two CDQWs, which have different degrees of potential fluctuation, are also compared and discussed. (C) 2009 Elsevier B.V. All rights reserved.