192 resultados para End-expiratory Pressure
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Objective: To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design: Prospective, randomized, and controlled experimental study. Setting: University research laboratory. Subjects: Wistar rats were randomly assigned to control (C) [saline (0.1 ml), intraperitoneally] and ALI [paraquat (15 mg/kg), intra peritoneally] groups. Measurements and Main Results: After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H(2)O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (Delta P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and Delta P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions: In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and Delta P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful. (Crit Care Med 2009; 37:1011-1017)
Resumo:
Background: To evaluate the cardiopulmonary effects of positive end-expiratory pressure (PEEP) equalization to intra-abdominal pressure (IAP) in an experimental model of intra-abdominal hypertension (IAH) and acute lung injury (ALI). Methods: Eight anesthetized pigs were submitted to IAH of 20 mm Hg with a carbon dioxide insufflator for 30 minutes and then submitted to lung lavage with saline and Tween (2.5%). Pressure x volume curves of the respiratory system were performed by a low flow method during IAH and ALI, and PEEP was subsequently adjusted to 27 cm center dot H(2)O for 30 minutes. Results: IAH decreases pulmonary and respiratory system static compliances and increases airway resistance, alveolar-arterial oxygen gradient, and respiratory dead space. The presence of concomitant ALI exacerbates these findings. PEEP identical to AP moderately improved oxygenation and respiratory mechanics; however, an important decline in stroke index and right ventricle ejection fraction was observed. Conclusions: Simultaneous IAH and ALI produce important impairments in the respiratory physiology. PEEP equalization to AP may improve the respiratory performance, nevertheless with a secondary hemodynamic derangement.
Resumo:
Background and objective: Hyperinflation with a decrease in inspiratory capacity (IC) is a common presentation for both unstable and stable COPD patients. As CPAP can reduce inspiratory load, possibly secondary to a reduction in hyperinflation, this study examined whether CPAP would increase IC in stable COPD patients. Methods: Twenty-one stable COPD patients (nine emphysema, 12 chronic bronchitis) received a trial of CPAP for 5 min at 4, 7 and 11 cmH(2)O. Fast and slow VC (SVC) were measured before and after each CPAP trial. In patients in whom all three CPAP levels resulted in a decreased IC, an additional trial of CPAP at 2 cmH(2)O was conducted. For each patient, a `best CPAP` level was defined as the one associated with the greatest IC. This pressure was then applied for an additional 10 min followed by spirometry. Results: Following application of the `best CPAP`, the IC and SVC increased in 15 patients (nine emphysema, six chronic bronchitis). The mean change in IC was 159 mL (95% CI: 80-237 mL) and the mean change in SVC was 240 mL (95% CI: 97-386 mL). Among these patients, those with emphysema demonstrated a mean increase in IC of 216 mL (95% CI: 94-337 mL). Six patients (all with chronic bronchitis) did not demonstrate any improvement in IC. Conclusions: The best individualized CPAP can increase inspiratory capacity in patients with stable COPD, especially in those with emphysema.
Resumo:
To evaluate the effects of frequency and inspiratory plateau pressure (Pplat) during recruitment manoeuvres (RMs) on lung and distal organs in acute lung injury (ALI). We studied paraquat-induced ALI rats. At 24 h, rats were anesthetized and RMs were applied using continuous positive airway pressure (CPAP, 40 cmH(2)O/40 s) or three-different sigh strategies: (a) 180 sighs/h and Pplat = 40 cmH(2)O (S180/40), (b) 10 sighs/h and Pplat = 40 cmH(2)O (S10/40), and (c) 10 sighs/h and Pplat = 20 cmH(2)O (S10/20). S180/40 yielded alveolar hyperinflation and increased lung and kidney epithelial cell apoptosis as well as type III procollagen (PCIII) mRNA expression. S10/40 resulted in a reduction in epithelial cell apoptosis and PCIII expression. Static elastance and alveolar collapse were higher in S10/20 than S10/40. The reduction in sigh frequency led to a protective effect on lung and distal organs, while the combination with reduced Pplat worsened lung mechanics and histology.
Resumo:
Objective: To investigate the effects of the rate of airway pressure increase and duration of recruitment maneuvers on lung function and activation of inflammation, fibrogenesis, and apoptosis in experimental acute lung injury. Design: Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects: Thirty-five Wistar rats submitted to acute lung injury induced by cecal ligation and puncture. Interventions: After 48 hrs, animals were randomly distributed into five groups (seven animals each): 1) nonrecruited (NR); 2) recruitment maneuvers (RMs) with continuous positive airway pressure (CPAP) for 15 secs (CPAP15); 3) RMs with CPAP for 30 secs (CPAP30); 4) RMs with stepwise increase in airway pressure (STEP) to targeted maximum within 15 secs (STEP15); and 5) RMs with STEP within 30 secs (STEP30). To perform STEP RMs, the ventilator was switched to a CPAP mode and positive end-expiratory pressure level was increased stepwise. At each step, airway pressure was held constant. RMs were targeted to 30 cm H(2)O. Animals were then ventilated for 1 hr with tidal volume of 6 mL/kg and positive end-expiratory pressure of 5 cm H(2)O. Measurements and Main Results: Blood gases, lung mechanics, histology (light and electronic microscopy), interleukin-6, caspase 3, and type 3 procollagen mRNA expressions in lung tissue. All RMs improved oxygenation and lung static elastance and reduced alveolar collapse compared to NR. STEP30 resulted in optimal performance, with: 1) improved lung static elastance vs. NR, CPAP15, and STEP15; 2) reduced alveolar-capillary membrane detachment and type 2 epithelial and endothelial cell injury scores vs. CPAP15 (p < .05); and 3) reduced gene expression of interleukin-6, type 3 procollagen, and caspase 3 in lung tissue vs. other RMs. Conclusions: Longer-duration RMs with slower airway pressure increase efficiently improved lung function, while minimizing the biological impact on lungs. (Crit Care Med 2011; 39:1074-1081)
Resumo:
Introduction Reduction of automatic pressure support based on a target respiratory frequency or mandatory rate ventilation (MRV) is available in the Taema-Horus ventilator for the weaning process in the intensive care unit (ICU) setting. We hypothesised that MRV is as effective as manual weaning in post-operative ICU patients. Methods There were 106 patients selected in the postoperative period in a prospective, randomised, controlled protocol. When the patients arrived at the ICU after surgery, they were randomly assigned to either: traditional weaning, consisting of the manual reduction of pressure support every 30 minutes, keeping the respiratory rate/tidal volume (RR/TV) below 80 L until 5 to 7 cmH(2)O of pressure support ventilation (PSV); or automatic weaning, referring to MRV set with a respiratory frequency target of 15 breaths per minute (the ventilator automatically decreased the PSV level by 1 cmH(2)O every four respiratory cycles, if the patient`s RR was less than 15 per minute). The primary endpoint of the study was the duration of the weaning process. Secondary endpoints were levels of pressure support, RR, TV (mL), RR/TV, positive end expiratory pressure levels, FiO(2) and SpO(2) required during the weaning process, the need for reintubation and the need for non-invasive ventilation in the 48 hours after extubation. Results In the intention to treat analysis there were no statistically significant differences between the 53 patients selected for each group regarding gender (p = 0.541), age (p = 0.585) and type of surgery (p = 0.172). Nineteen patients presented complications during the trial (4 in the PSV manual group and 15 in the MRV automatic group, p < 0.05). Nine patients in the automatic group did not adapt to the MRV mode. The mean +/- sd (standard deviation) duration of the weaning process was 221 +/- 192 for the manual group, and 271 +/- 369 minutes for the automatic group (p = 0.375). PSV levels were significantly higher in MRV compared with that of the PSV manual reduction (p < 0.05). Reintubation was not required in either group. Non-invasive ventilation was necessary for two patients, in the manual group after cardiac surgery (p = 0.51). Conclusions The duration of the automatic reduction of pressure support was similar to the manual one in the postoperative period in the ICU, but presented more complications, especially no adaptation to the MRV algorithm. Trial Registration Trial registration number: ISRCTN37456640
Resumo:
Selection of the optimal positive end-expiratory pressure (PEEP) to avoid ventilator-induced lung injury in patients under mechanical ventilation is still a matter of debate. Many methods are available, but none is considered the gold standard. In the previous issue of Critical Care, Zhao and colleagues applied a method based on electrical impedance tomography to help select the PEEP that minimized ventilation inhomogeneities. Though promising when alveolar collapse and overdistension are present, this method might be misleading in patients with normal lungs.
Resumo:
The effects of prolonged recruitment manoeuvre (PRM) were compared with sustained inflation (SI) in paraquat-induced mild acute lung injury (ALI) in rats. Twenty-four hours after ALI induction, rats were anesthetized and mechanically ventilated with VT = 6 ml/kg and positive end-expiratory pressure (PEEP) = 5 cmH(2)O for 1 h. SI was performed with an instantaneous pressure increase of 40 cmH(2)O that was sustained for 40 s, while PRM was done by a step-wise increase in positive inspiratory pressure (PIP) of 15-20-25 cmH(2)O above a PEEP of 15 cm H(2)O (maximal PIP = 40 cmH(2)O), with interposed periods of PIP = 10 cmH(2)O above a PEEP = 15 cmH(2)O. Lung static elastance and the amount of alveolar collapse were more reduced with PRM than SI, yielding improved oxygenation. Additionally, tumour necrosis factor-alpha, interleukin-6, interferon-gamma, and type III procollagen mRNA expressions in lung tissue and lung epithelial cell apoptosis decreased more in PRM. In conclusion, PRM improved lung function, with less damage to alveolar epithelium, resulting in reduced pulmonary injury. (C) 2009 Elsevier BLV. All rights reserved.
Resumo:
To present a novel algorithm for estimating recruitable alveolar collapse and hyperdistension based on electrical impedance tomography (EIT) during a decremental positive end-expiratory pressure (PEEP) titration. Technical note with illustrative case reports. Respiratory intensive care unit. Patients with acute respiratory distress syndrome. Lung recruitment and PEEP titration maneuver. Simultaneous acquisition of EIT and X-ray computerized tomography (CT) data. We found good agreement (in terms of amount and spatial location) between the collapse estimated by EIT and CT for all levels of PEEP. The optimal PEEP values detected by EIT for patients 1 and 2 (keeping lung collapse < 10%) were 19 and 17 cmH(2)O, respectively. Although pointing to the same non-dependent lung regions, EIT estimates of hyperdistension represent the functional deterioration of lung units, instead of their anatomical changes, and could not be compared directly with static CT estimates for hyperinflation. We described an EIT-based method for estimating recruitable alveolar collapse at the bedside, pointing out its regional distribution. Additionally, we proposed a measure of lung hyperdistension based on regional lung mechanics.
Resumo:
Purpose: Many methods exist in the literature for identifying PEEP to set in ARDS patients following a lung recruitment maneuver (RM). We compared ten published parameters for setting PEEP following a RM. Methods: Lung injury was induced by bilateral lung lavage in 14 female Dorset sheep, yielding a PaO(2) 100-150 mmHg at F(I)O(2) 1.0 and PEEP 5 cmH(2)O. A quasi-static P-V curve was then performed using the supersyringe method; PEEP was set to 20 cmH(2)O and a RM performed with pressure control ventilation (inspiratory pressure set to 40-50 cmH(2)O), until PaO(2) + PaCO(2) > 400 mmHg. Following the RM, a decremental PEEP trial was performed. The PEEP was decreased in 1 cmH(2)O steps every 5 min until 15 cmH(2)O was reached. Parameters measured during the decremental PEEP trial were compared with parameters obtained from the P-V curve. Results: For setting PEEP, maximum dynamic tidal respiratory compliance, maximum PaO(2), maximum PaO(2) + PaCO(2), and minimum shunt calculated during the decremental PEEP trial, and the lower Pflex and point of maximal compliance increase on the inflation limb of the P-V curve (Pmci,i) were statistically indistinguishable. The PEEP value obtained using the deflation upper Pflex and the point of maximal compliance decrease on the deflation limb were significantly higher, and the true inflection point on the inflation limb and minimum PaCO(2) were significantly lower than the other variables. Conclusion: In this animal model of ARDS, dynamic tidal respiratory compliance, maximum PaO(2), maximum PaO(2) + PaCO(2), minimum shunt, inflation lower Pflex and Pmci,i yield similar values for PEEP following a recruitment maneuver.
Resumo:
Objectives: Lung hyperinflation may be assessed by computed tomography (CT). As shown for patients with emphysema, however, CT image reconstruction affects quantification of hyperinflation. We studied the impact of reconstruction parameters on hyperinflation measurements in mechanically ventilated (MV) patients. Design: Observational analysis. Setting: A University hospital-affiliated research Unit. Patients: The patients were MV patients with injured (n = 5) or normal lungs (n = 6), and spontaneously breathing patients (n = 5). Interventions: None. Measurements and results: Eight image series involving 3, 5, 7, and 10 mm slices and standard and sharp filters were reconstructed from identical CT raw data. Hyperinflated (V-hyper), normally (V-normal), poorly (V-poor), and nonaerated (V-non) volumes were calculated by densitometry as percentage of total lung volume (V-total). V-hyper obtained with the sharp filter systematically exceeded that with the standard filter showing a median (interquartile range) increment of 138 (62-272) ml corresponding to approximately 4% of V-total. In contrast, sharp filtering minimally affected the other subvolumes (V-normal, V-poor, V-non, and V-total). Decreasing slice thickness also increased V-hyper significantly. When changing from 10 to 3 mm thickness, V-hyper increased by a median value of 107 (49-252) ml in parallel with a small and inconsistent increment in V-non of 12 (7-16) ml. Conclusions: Reconstruction parameters significantly affect quantitative CT assessment of V-hyper in MV patients. Our observations suggest that sharp filters are inappropriate for this purpose. Thin slices combined with standard filters and more appropriate thresholds (e.g., -950 HU in normal lungs) might improve the detection of V-hyper. Different studies on V-hyper can only be compared if identical reconstruction parameters were used.
Resumo:
BACKGROUND: Retention of airway secretions is a common and serious problem in ventilated patients. Treating or avoiding secretion retention with mucus thinning, patient-positioning, airway suctioning, or chest or airway vibration or percussion may provide short-term benefit. METHODS: In a series of laboratory experiments with a test-lung system we examined the role of ventilator settings and lung-impedance on secretion retention and expulsion. Known quantities of a synthetic dye-stained mucus simulant with clinically relevant properties were injected into a transparent tube the diameter of an adult trachea and exposed to various mechanical-ventilation conditions. Mucus-simulant movement was measured with a photodensitometric technique and examined with image-analysis software. We tested 2 mucus-simulant viscosities and various peak flows, inspiratory/ expiratory flow ratios, intrinsic positive end-expiratory pressures, ventilation waveforms, and impedance values. RESULTS: Ventilator settings that produced flow bias had a major effect on mucus movement. Expiratory How bias associated with intrinsic positive end-expiratory pressure generated by elevated minute ventilation moved mucus toward the airway opening, whereas intrinsic positive end-expiratory pressure generated by increased airway resistance moved the mucus toward the lungs. Inter-lung transfer of mucus simulant occurred rapidly across the ""carinal divider"" between interconnected test lungs set to radically different compliances; the mucus moved out of the low-compliance lung and into the high-compliance lung. CONCLUSIONS: The movement of mucus simulant was influenced by the ventilation pattern and lung impedance. Flow bias obtained with ventilator settings may clear or embed mucus during mechanical ventilation.
Resumo:
Objectives: Pneumothorax is a frequent complication during mechanical ventilation. Electrical impedance tomography (EIT) is a noninvasive tool that allows real-time imaging of regional ventilation. The purpose of this study was to 1) identify characteristic changes in the EIT signals associated with pneumothoraces; 2) develop and fine-tune an algorithm for their automatic detection; and 3) prospectively evaluate this algorithm for its sensitivity and specificity in detecting pneumothoraces in real time. Design: Prospective controlled laboratory animal investigation. Setting: Experimental Pulmonology Laboratory of the University of Sao Paulo. Subjects: Thirty-nine anesthetized mechanically ventilated supine pigs (31.0 +/- 3.2 kg, mean +/- SD). Interventions. In a first group of 18 animals monitored by EIT, we either injected progressive amounts of air (from 20 to 500 mL) through chest tubes or applied large positive end-expiratory pressure (PEEP) increments to simulate extreme lung overdistension. This first data set was used to calibrate an EIT-based pneumothorax detection algorithm. Subsequently, we evaluated the real-time performance of the detection algorithm in 21 additional animals (with normal or preinjured lungs), submitted to multiple ventilatory interventions or traumatic punctures of the lung. Measurements and Main Results: Primary EIT relative images were acquired online (50 images/sec) and processed according to a few imaging-analysis routines running automatically and in parallel. Pneumothoraces as small as 20 mL could be detected with a sensitivity of 100% and specificity 95% and could be easily distinguished from parenchymal overdistension induced by PEEP or recruiting maneuvers, Their location was correctly identified in all cases, with a total delay of only three respiratory cycles. Conclusions. We created an EIT-based algorithm capable of detecting early signs of pneumothoraces in high-risk situations, which also identifies its location. It requires that the pneumothorax occurs or enlarges at least minimally during the monitoring period. Such detection was operator-free and in quasi real-time, opening opportunities for improving patient safety during mechanical ventilation.
Resumo:
Introduction: Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods: We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student`s t test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results: Thirty-one ARDS patients (A: PaO(2)/FiO(2) <= 200, 45 +/- 14 years, 16 males) and 11 controls (C:52 +/- 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 +/- 27.2%, C:76.7 +/- 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 +/- 35.2%, C:21.8 +/- 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 +/- 54.3 mu m, C:86.4 +/- 33.3 mu m, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P = 0.03). The extension of normal epithelium showed a positive correlation with PaO(2)/FiO(2) (r(2) = 0.34; P = 0.02) and a negative correlation with plateau pressure (r(2) = 0.27; P = 0.04). The extension of denuded epithelium showed a negative correlation with PaO(2)/FiO(2) (r(2) = 0.27; P = 0.04). Conclusions: Structural changes in small airways of patients with ARDS were characterized by epithelial denudation, inflammation and airway wall thickening with ECM remodeling. These changes are likely to contribute to functional airway changes in patients with ARDS.
Resumo:
Clinical applications of quantitative computed tomography (qCT) in patients with pulmonary opacifications are hindered by the radiation exposure and by the arduous manual image processing. We hypothesized that extrapolation from only ten thoracic CT sections will provide reliable information on the aeration of the entire lung. CTs of 72 patients with normal and 85 patients with opacified lungs were studied retrospectively. Volumes and masses of the lung and its differently aerated compartments were obtained from all CT sections. Then only the most cranial and caudal sections and a further eight evenly spaced sections between them were selected. The results from these ten sections were extrapolated to the entire lung. The agreement between both methods was assessed with Bland-Altman plots. Median (range) total lung volume and mass were 3,738 (1,311-6,768) ml and 957 (545-3,019) g, the corresponding bias (limits of agreement) were 26 (-42 to 95) ml and 8 (-21 to 38) g, respectively. The median volumes (range) of differently aerated compartments (percentage of total lung volume) were 1 (0-54)% for the nonaerated, 5 (1-44)% for the poorly aerated, 85 (28-98)% for the normally aerated, and 4 (0-48)% for the hyperaerated subvolume. The agreement between the extrapolated results and those from all CT sections was excellent. All bias values were below 1% of the total lung volume or mass, the limits of agreement never exceeded +/- 2%. The extrapolation method can reduce radiation exposure and shorten the time required for qCT analysis of lung aeration.