39 resultados para Determination of aluminium in water
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 mu L s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), mu A) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): ip = (-20.5 +/- 0.3) Cparaquat -(0.02 +/- 0.03). The limits of detection and quantification were 2.0 and 7.0 mu g L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.
Resumo:
A new electrochemical methodology has been developed for the detection of ozone using multiwalled carbon nanotubes (MWCNT). The method presented here is based on the reaction of ozone with indigo blue dye producing anthranilic acid (ATN). The electrochemical profile of ATN on an electrode of glassy carbon (GC) modified with MWCNT showed an oxidation peak potential at 750 mV vs. Ag/AgCl. An analytical method was developed using differential pulse voltammetry (DPV) to determine ATN in a range of 50-400 nmol L(-1), with a detection limit of 9.7 nmol L(-1). Ozonated water samples were successfully analyzed by GC/MWCNT electrode and the recovery procedure yielded values between of 96.5 and 102.3%.
Resumo:
A sulfated-beta-cyclodextrin (s-beta-CD) modified reduced flow micellar electrokinetic chromatography (RF-MEKC) method was developed and validated for the determination of catechins in green tea. The optimal electrolyte consisted of 0.2% triethylamine, 50 mmol/L SDS and 0.8% s-beta-CD (pH = 2.9), allowing baseline separation of five catechins in 4 min. The samples and standards were injected at 0.6 psi for 5 s under constant voltage of -30 kV. Sample preparation simply involved extraction of 2 g of tea with 200 mL water at 95 C under constant stirring for 5 min. The method demonstrated excellent performance, with limits of detection (LOD) and quantification (LOQ) of 0.02-0.1 and 0.1-0.5 mu g/mL, respectively, and recovery percentages of 94-101%. The method was applied to six samples of Brazilian green tea infusions. Epigallocatechin gallate (23.4-112.4 mu g/mL) was the major component, followed by epigallocatechin (18.4-78.9 mu g/mL), epicatechin gallate (5.6-29.6 mu g/mL), epicatechin (4.6-14.5 mu g/mL) and catechin (3.2-8.2 mu g/mL). (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A simple, fast, accurate, and sensitive spectrophotometric method was developed to determine zinc(II). This method is based on the reaction of Zn(II) with di-2-pyridyl ketone benzoylhydrazone (DPKBH), at pH=5.5 and 50% (v/v) ethanol. Beers law was obeyed in the range 0.020-1.82 mu g mL(-1) with a molar apsorptivity of 3.64 x 10(4) L mol(-1) cm(-1), and a detection limit (3) of 2.29 mu g L-1. The action of some interfering ions was verified and the developed method applied to pharmaceutical and biological samples. The results were then compared with those obtained by using a flame atomic absorption technique.
Resumo:
This work reports the utilization of two methodologies for carbaryl determination in tomatoes. The measurements were carried out using an amperometric biosensor technique based on the inhibition of acetylcholinesterase activity due to carbaryl adsorption and a HPLC procedure. The electrochemical experiments were performed in 0.1 mol L-1 phosphate buffer solutions at pH 7.4 with an incubation time of 8 min. The analytical curve obtained in pure solutions showed excellent linearity in the 5.0 x 10(-5) to 75 x 10(-5) mol L-1 range, with the limit of detection at 0.4 x 10(-3) gL(-1). The application of such a methodology in tomato samples involved solely liquidising the samples, which were spiked with 6.0 x 10(-6) and 5.0 x 10(-5) mol L-1 carbaryl. Recovery in such samples presented values of 99.0 and 92.4%, respectively. In order to obtain a comparison, HPLC experiments were also conducted under similar conditions. However, the tomato samples have to be manipulated by an extraction procedure (MSPD), which yielded much lower recovery values (78.3 and 84.8%, respectively). On the other hand, the detection limit obtained was much lower than that for the biosensor, i.e., 3.2 x 10(-6) g L-1. Finally, the biosensor methodology was employed to analyze carbaryl directly inside the tomato, without any previous manipulation. In this case, the biosensor was immersed in the tomato pulp, which had previously been spiked with the pesticide for 8 min, removed and inserted in the electrochemical cell. A recovery of 83.4% was obtained, showing very low interference of the matrix constituents. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the development, electrochemical characterization and utilization of a cobalt phthalocyanine (CoPc), modified multi-walled carbon nanotube (MWCNT), and paraffin composite electrode for the quantitative determination of epinephrine (EP) in human urine samples. The electrochemical profile of the proposed composite electrode was analyzed by differential pulse voltammetry (DPV) that showed a shift of the oxidation peak potential of EP at 175 mV to less positive value, compared with a paraffin/graphite composite electrode without CoPc. DPV experiments in PBS at pH 6.0 were performed to determine EP without any previous step of extraction, clean-up, and derivatization, in the range from 1.33 to 5.50 mu mol L(-1), with a detection limit of 15.6 nmol L(-1) (2.86) of EP in electrolyte prepared with purified water. The lifetime of the proposed sensors was at least over 1000 determinations with 1.7 and 3.1 repeatability and reproducibility relative standard deviations, respectively. Human urine samples without any purification step were successfully analyzed under the standard addition method using paraffin/MWCNT/CoPc composite electrode. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Electronic polarization of the acetone molecule in the excited n -> pi* state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm (1). (c) 2010 Published by Elsevier B.V.
Resumo:
A novel approach of using a gold disc microelectrode to analyze sweat samples for copper ions by anodic square wave stripping voltammetry (SW stripping voltammetry) is described Sweat was collected from the lower back of four subjects after physical exercise and the sample volume required for the determinations was 100 mu L. Under the optimized conditions the calibration plot was linear over the range 1-100 mu mol L(-1) Cu(II) with a limit of detection of 0 25 mu mol L(-1) The precision was evaluated by carrying out five replicate measurements in a 1 mu mol L(-1) Cu(II) solution and the standard deviation was found to be 1 5% Measurements were performed by inserting the microelectrode into sweat drops and Cu(II) concentrations in the analyzed samples ranged from 09 to 28 mu mol L(-1) Values obtained by the proposed voltammetric method agreed well with those found using graphite furnace atomic absorption spectroscopy (GFAAS) (C) 2010 Elsevier B V All rights reserved
Resumo:
Introduction - A large number of natural and synthetic compounds having butenolides as a core unit have been described and many of them display a wide range of biological activities. Butenolides from P. malacophyllum have presented potential antifungal activities but no specific, fast, and precise method has been developed for their determination. Objective - To develop a methodology based on micellar electrokinetic chromatography to determine butenolides in Piper species. Methodology - The extracts were analysed in an uncoated fused-silica capillaries and for the micellar system 20 mmol/L SDS, 20% (v/v) acetonitrile (ACN) and 10 mmol/L STB aqueous buffer at pH 9.2 were used. The method was validated for precision, linearity, limit of detection (LOD) and limit of quantitation (LOQ) and the standard deviations were determined from the standard errors estimated by the regression line. Results - A micellar electrokinetic chromatography (MEKC) method for determination of butenolides in extracts gave full resolution for 1 and 2. The analytical curve in the range 10.0-50.0 mu g/mL (r(2) = 0.999) provided LOD and LOQ for 1 and 2 of 2.1/6.3 and 1.1/3.5 mu g/mL, respectively. The RSD for migration times were 0.12 and 1.0% for peak area ratios with 100.0 +/- 1.4% of recovery. Conclusions - A novel high-performance MEKC method developed for the analysis of butenolides 1 and 2 in leaf extracts of P. malacophyllum allowed their quantitative determined within an analysis time shorter than 5 min and the results indicated CE to be a feasible analytical technique for the quantitative determination of butenolides in Piper extracts. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
A fast and reliable method for the direct determination of iron in sand by solid sampling graphite furnace atomic absorption spectrometry was developed. A Zeeman-effect 3-field background corrector was used to decrease the sensitivity of spectrometer measurements. This strategy allowed working with up to 200 mu g of samples, thus improving the representativity. Using samples with small particle sizes (1-50 mu m) and adding 5 mu g Pd as chemical modifier, it was possible to obtain suitable calibration curves with aqueous reference solutions. The pyrolysis and atomization temperatures for the optimized heating program were 1400 and 2500 degrees C, respectively. The characteristic mass, based on integrated absorbance, was 56 pg, and the detection limits, calculated considering the variability of 20 consecutive measurements of platform inserted without sample was 32 pg. The accuracy of the procedure was checked with the analysis of two reference materials (IPT 62 and 63). The determined concentrations were in agreement with the recommended values (95% confidence level). Five sand samples were analyzed, and a good agreement (95% confidence level) was observed using the proposed method and conventional flame atomic absorption spectrometry. The relative standard deviations were lower than 25% (n = 5). The tube and boat platform lifetimes were around 1000 and 250 heating cycles, respectively.
Resumo:
This article presents a method employing stir bar sorptive extraction (SBSE) with in situ derivatization, in combination with either thermal or liquid desorption on-line coupled to gas chromatography-mass spectrometry for the analysis of fluoxetine in plasma samples. Ethyl chloroformate was employed as derivatizing agent producing symmetrical peaks. Parameters such as solvent polarity, time for analyte desorption, and extraction time, were evaluated. During the validation process, the developed method presented specificity, linearity (R-2 > 0.99), precision (R.S.D. < 15%), and limits of quantification (LOQ) of 30 and 1.37 pg mL(-1), when liquid and thermal desorption were employed, respectively. This simple and highly sensitive method showed to be adequate for the measurement-of fluoxetine in typical and trace concentration levels. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A rapid, selective and specific capillary zone electrophoresis method to determine polyamines in organic extracts from roots of Canavalia ensiformis (Jack Beans) was developed using ultra violet (UV) detection. Canavalia ensiformis is relatively free from diseases and it is used as reference in allelopathy studies. Polyamines are widely distributed in plant and it could be involved in plant pathogen interactions. Optimal separation was achieved using 15 mmol.L-1formic acid (pH 3.0) + 4 mmol.L-1 imidazole as a background electrolyte. It was possible to identify and quantify the polyamines on herbal samples in the presence of other phytochemical substances and analyze them quickly (up to 6 min). The applicability of this method was evaluated in crude organic extracts from roots of Canavalia ensiformis.
Resumo:
Determinations of the volatile elements carbon, hydrogen, sulfur and nitrogen in many geological RM, performed with the LECO CHN and SC analysers, are presented. The method allowed the determination of S in concentrations from a few % m/m to 0.001% m/m or less, of C from % m/m to 0.01% m/m and of H from % m/m to 0.004% m/m. Accuracy was usually better than the XRF method (for S). All obtained values passed the Sutarno-Steger test, which establishes that vertical bar(mean(analysed) - mean(certified))vertical bar/ S(certified) < 2, for the cases with an appropriate number of determinations (n > 10 for each element). It was possible to perform routine determination of C, H and S with the instrumentation, coupled with the determination of major and minor elements in geological materials. Determination of nitrogen could also be performed on an exploratory basis, with improvements in the method dependent on the future availability of more reference materials with reliable composition of this element.
Resumo:
A combined and sequential Monte Carlo-quantum mechanics methodology is used to describe the electronic absorption spectrum of the fluorescein dianion in water. Different sets of 100 statistically relevant configurations composed of the solute and several solvent molecules are sampled from the Monte Carlo simulation for a posteriori quantum mechanical calculations of the spectra. In the largest case the configurations are composed of fluorescein and 90 explicit water molecules embedded in the electrostatic field of all remaining water molecules within a distance of 11.3 angstrom. These configurations include 305 atoms and 842 valence electrons, justifying the use of a semi-empirical approach. The electronic spectrum is then calculated using the INDO/CIS method. The solvatochromic shift of fluorescein in water, compared with in isolation, is calculated using the discrete and explicit solvent models. The use of electrostatically embedded explicit water molecules, in INDO/CIS calculations, gives a good description of the spectral shift of the fluorescein dianion in aqueous environment. The results are verified to converge both statistically and with respect to the number of explicit solvent molecules used.