3 resultados para Computer Based Learning System

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a visual stimulus generator (VSImG) capable of displaying a gray-scale, 256 x 256 x 8 bitmap image with a frame rate of 500 Hz using a boustrophedonic scanning technique. It is designed for experiments with motion-sensitive neurons of the fly`s visual system, where the flicker fusion frequency of the photoreceptors can reach up to 500 Hz. Devices with such a high frame rate are not commercially available, but are required, if sensory systems with high flicker fusion frequency are to be studied. The implemented hardware approach gives us complete real-time control of the displacement sequence and provides all the signals needed to drive an electrostatic deflection display. With the use of analog signals, very small high-resolution displacements, not limited by the image`s pixel size can be obtained. Very slow image displacements with visually imperceptible steps can also be generated. This can be of interest for other vision research experiments. Two different stimulus files can be used simultaneously, allowing the system to generate X-Y displacements on one display or independent movements on two displays as long as they share the same bitmap image. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of minoxidil (MX) with potassium permanganate as a carrier in a flow injection method is described. The detection at 550nm was linear from 1.0x10-5 to 5.0x10-4mol L-1. The limit of detection (3 sigma/slope) was 8.92x10-6mol L-1, with an analytical frequency of 32h-1. The proposed method was applied to commercial samples, with recoveries from 104.7 to 106.4%. Comparison with the HPLC procedure reveled relative errors from 0.48 to 1.4%, and the results agreed within a 95% confidence level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case-Based Reasoning is a methodology for problem solving based on past experiences. This methodology tries to solve a new problem by retrieving and adapting previously known solutions of similar problems. However, retrieved solutions, in general, require adaptations in order to be applied to new contexts. One of the major challenges in Case-Based Reasoning is the development of an efficient methodology for case adaptation. The most widely used form of adaptation employs hand coded adaptation rules, which demands a significant knowledge acquisition and engineering effort. An alternative to overcome the difficulties associated with the acquisition of knowledge for case adaptation has been the use of hybrid approaches and automatic learning algorithms for the acquisition of the knowledge used for the adaptation. We investigate the use of hybrid approaches for case adaptation employing Machine Learning algorithms. The approaches investigated how to automatically learn adaptation knowledge from a case base and apply it to adapt retrieved solutions. In order to verify the potential of the proposed approaches, they are experimentally compared with individual Machine Learning techniques. The results obtained indicate the potential of these approaches as an efficient approach for acquiring case adaptation knowledge. They show that the combination of Instance-Based Learning and Inductive Learning paradigms and the use of a data set of adaptation patterns yield adaptations of the retrieved solutions with high predictive accuracy.