74 resultados para Closed loop control systems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work deals with a procedure for model re-identification of a process in closed loop with ail already existing commercial MPC. The controller considered here has a two-layer structure where the upper layer performs a target calculation based on a simplified steady-state optimization of the process. Here, it is proposed a methodology where a test signal is introduced in a tuning parameter of the target calculation layer. When the outputs are controlled by zones instead of at fixed set points, the approach allows the continuous operation of the process without an excessive disruption of the operating objectives as process constraints and product specifications remain satisfied during the identification test. The application of the method is illustrated through the simulation of two processes of the oil refining industry. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Among several process variability sources, valve friction and inadequate controller tuning are supposed to be two of the most prevalent. Friction quantification methods can be applied to the development of model-based compensators or to diagnose valves that need repair, whereas accurate process models can be used in controller retuning. This paper extends existing methods that jointly estimate the friction and process parameters, so that a nonlinear structure is adopted to represent the process model. The developed estimation algorithm is tested with three different data sources: a simulated first order plus dead time process, a hybrid setup (composed of a real valve and a simulated pH neutralization process) and from three industrial datasets corresponding to real control loops. The results demonstrate that the friction is accurately quantified, as well as ""good"" process models are estimated in several situations. Furthermore, when a nonlinear process model is considered, the proposed extension presents significant advantages: (i) greater accuracy for friction quantification and (ii) reasonable estimates of the nonlinear steady-state characteristics of the process. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The demands for improvement in sound quality and reduction of noise generated by vehicles are constantly increasing, as well as the penalties for space and weight of the control solutions. A promising approach to cope with this challenge is the use of active structural-acoustic control. Usually, the low frequency noise is transmitted into the vehicle`s cabin through structural paths, which raises the necessity of dealing with vibro-acoustic models. This kind of models should allow the inclusion of sensors and actuators models, if accurate performance indexes are to be accessed. The challenge thus resides in deriving reasonable sized models that integrate structural, acoustic, electrical components and the controller algorithm. The advantages of adequate active control simulation strategies relies on the cost and time reduction in the development phase. Therefore, the aim of this paper is to present a methodology for simulating vibro-acoustic systems including this coupled model in a closed loop control simulation framework that also takes into account the interaction between the system and the control sensors/actuators. It is shown that neglecting the sensor/actuator dynamics can lead to inaccurate performance predictions.
Resumo:
Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.
Resumo:
One of the most important recent improvements in cardiology is the use of ventricular assist devices (VADs) to help patients with severe heart diseases, especially when they are indicated to heart transplantation. The Institute Dante Pazzanese of Cardiology has been developing an implantable centrifugal blood pump that will be able to help a sick human heart to keep blood flow and pressure at physiological levels. This device will be used as a totally or partially implantable VAD. Therefore, an improvement on device performance is important for the betterment of the level of interaction with patient`s behavior or conditions. But some failures may occur if the device`s pumping control does not follow the changes in patient`s behavior or conditions. The VAD control system must consider tolerance to faults and have a dynamic adaptation according to patient`s cardiovascular system changes, and also must attend to changes in patient conditions, behavior, or comportments. This work proposes an application of the mechatronic approach to this class of devices based on advanced techniques for control, instrumentation, and automation to define a method for developing a hierarchical supervisory control system that is able to perform VAD control dynamically, automatically, and securely. For this methodology, we used concepts based on Bayesian network for patients` diagnoses, Petri nets to generate a VAD control algorithm, and Safety Instrumented Systems to ensure VAD system security. Applying these concepts, a VAD control system is being built for method effectiveness confirmation.
Resumo:
Safety Instrumented Systems (SIS) are designed to prevent and / or mitigate accidents, avoiding undesirable high potential risk scenarios, assuring protection of people`s health, protecting the environment and saving costs of industrial equipment. The design of these systems require formal methods for ensuring the safety requirements, but according material published in this area, has not identified a consolidated procedure to match the task. This sense, this article introduces a formal method for diagnosis and treatment of critical faults based on Bayesian network (BN) and Petri net (PN). This approach considers diagnosis and treatment for each safety instrumented function (SIF) including hazard and operability (HAZOP) study in the equipment or system under control. It also uses BN and Behavioral Petri net (BPN) for diagnoses and decision-making and the PN for the synthesis, modeling and control to be implemented by Safety Programmable Logic Controller (PLC). An application example considering the diagnosis and treatment of critical faults is presented and illustrates the methodology proposed.
Resumo:
Let M be a finite-dimensional manifold and Sigma be a driftless control system on M of full rank. We prove that for a given initial state x epsilon M, the covering space Gamma(Sigma, x) for a monotonic homotopy of trajectories of Sigma which is recently constructed in [1] coincides with the simply connected universal covering manifold of M and that the terminal projection epsilon(x) : Gamma(Sigma, x) -> M given by epsilon(x) ([alpha]) = alpha(1) is a covering mapping.
Resumo:
Vessel dynamic positioning (DP) systems are based on conventional PID-type controllers and an extended Kalman filter. However, they present a difficult tuning procedure, and the closed-loop performance varies with environmental or loading conditions since the dynamics of the vessel are eminently nonlinear. Gain scheduling is normally used to address the nonlinearity of the system. To overcome these problems, a sliding mode control was evaluated. This controller is robust to variations in environmental and loading conditions, it maintains performance and stability for a large range of conditions, and presents an easy tuning methodology. The performance of the controller was evaluated numerically and experimentally in order to address its effectiveness. The results are compared with those obtained from conventional PID controller. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Considering the increasing popularity of network-based control systems and the huge adoption of IP networks (such as the Internet), this paper studies the influence of network quality of service (QoS) parameters over quality of control parameters. An example of a control loop is implemented using two LonWorks networks (CEA-709.1) interconnected by an emulated IP network, in which important QoS parameters such as delay and delay jitter can be completely controlled. Mathematical definitions are provided according to the literature, and the results of the network-based control loop experiment are presented and discussed.
Resumo:
The paper presents the development of a mechanical actuator using a shape memory alloy with a cooling system based on the thermoelectric effect (Seebeck-Peltier effect). Such a method has the advantage of reduced weight and requires a simpler control strategy as compared to other forced cooling systems. A complete mathematical model of the actuator was derived, and an experimental prototype was implemented. Several experiments are used to validate the model and to identify all parameters. A robust and nonlinear controller, based on sliding-mode theory, was derived and implemented. Experiments were used to evaluate the actuator closed-loop performance, stability, and robustness properties. The results showed that the proposed cooling system and controller are able to improve the dynamic response of the actuator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Model predictive control (MPC) is usually implemented as a control strategy where the system outputs are controlled within specified zones, instead of fixed set points. One strategy to implement the zone control is by means of the selection of different weights for the output error in the control cost function. A disadvantage of this approach is that closed-loop stability cannot be guaranteed, as a different linear controller may be activated at each time step. A way to implement a stable zone control is by means of the use of an infinite horizon cost in which the set point is an additional variable of the control problem. In this case, the set point is restricted to remain inside the output zone and an appropriate output slack variable is included in the optimisation problem to assure the recursive feasibility of the control optimisation problem. Following this approach, a robust MPC is developed for the case of multi-model uncertainty of open-loop stable systems. The controller is devoted to maintain the outputs within their corresponding feasible zone, while reaching the desired optimal input target. Simulation of a process of the oil re. ning industry illustrates the performance of the proposed strategy.
Resumo:
Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.
Resumo:
This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed-loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The main objective of this paper is to relieve the power system engineers from the burden of the complex and time-consuming process of power system stabilizer (PSS) tuning. To achieve this goal, the paper proposes an automatic process for computerized tuning of PSSs, which is based on an iterative process that uses a linear matrix inequality (LMI) solver to find the PSS parameters. It is shown in the paper that PSS tuning can be written as a search problem over a non-convex feasible set. The proposed algorithm solves this feasibility problem using an iterative LMI approach and a suitable initial condition, corresponding to a PSS designed for nominal operating conditions only (which is a quite simple task, since the required phase compensation is uniquely defined). Some knowledge about the PSS tuning is also incorporated in the algorithm through the specification of bounds defining the allowable PSS parameters. The application of the proposed algorithm to a benchmark test system and the nonlinear simulation of the resulting closed-loop models demonstrate the efficiency of this algorithm. (C) 2009 Elsevier Ltd. All rights reserved.