273 resultados para COUPLED-OSCILLATOR-SYSTEMS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaotic synchronization has been discovered to be an important property of neural activities, which in turn has encouraged many researchers to develop chaotic neural networks for scene and data analysis. In this paper, we study the synchronization role of coupled chaotic oscillators in networks of general topology. Specifically, a rigorous proof is presented to show that a large number of oscillators with arbitrary geometrical connections can be synchronized by providing a sufficiently strong coupling strength. Moreover, the results presented in this paper not only are valid to a wide class of chaotic oscillators, but also cover the parameter mismatch case. Finally, we show how the obtained result can be applied to construct an oscillatory network for scene segmentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchronization and chaos play important roles in neural activities and have been applied in oscillatory correlation modeling for scene and data analysis. Although it is an extensively studied topic, there are still few results regarding synchrony in locally coupled systems. In this paper we give a rigorous proof to show that large numbers of coupled chaotic oscillators with parameter mismatch in a 2D lattice can be synchronized by providing a sufficiently large coupling strength. We demonstrate how the obtained result can be applied to construct an oscillatory network for scene segmentation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The asymptotic behavior of a class of coupled second-order nonlinear dynamical systems is studied in this paper. Using very mild assumptions on the vector-field, conditions on the coupling parameters that guarantee synchronization are provided. The proposed result does not require solutions to be ultimately bounded in order to prove synchronization, therefore it can be used to study coupled systems that do not globally synchronize, including synchronization of unbounded solutions. In this case, estimates of the synchronization region are obtained. Synchronization of two-coupled nonlinear pendulums and two-coupled Duffing systems are studied to illustrate the application of the proposed theory.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Several experimental studies have altered the phase relationship between photic and non-photic environmental, 24 h cycles (zeitgebers) in order to assess their role in the synchronization of circadian rhythms. To assist in the interpretation of the complex activity patterns that emerge from these ""conflicting zeitgeber'' protocols, we present computer simulations of coupled circadian oscillators forced by two independent zeitgebers. This circadian system configuration was first employed by Pittendrigh and Bruce (1959), to model their studies of the light and temperature entrainment of the eclosion oscillator in Drosophila. Whereas most of the recent experiments have restricted conflicting zeitgeber experiments to two experimental conditions, by comparing circadian oscillator phases under two distinct phase relationships between zeitgebers (usually 0 and 12 h), Pittendrigh and Bruce compared eclosion phase under 12 distinct phase relationships, spanning the 24 h interval. Our simulations using non-linear differential equations replicated complex non-linear phenomena, such as ""phase jumps'' and sudden switches in zeitgeber preferences, which had previously been difficult to interpret. Our simulations reveal that these phenomena generally arise when inter-oscillator coupling is high in relation to the zeitgeber strength. Manipulations in the structural symmetry of the model indicated that these results can be expected to apply to a wide range of system configurations. Finally, our studies recommend the use of the complete protocol employed by Pittendrigh and Bruce, because different system configurations can generate similar results when a ""conflicting zeitgeber experiment'' incorporates only two phase relationships between zeitgebers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the existence of positive solutions of Hamiltonian-type systems of second-order elliptic PDE in the whole space. The systems depend on a small parameter and involve a potential having a global well structure. We use dual variational methods, a mountain-pass type approach and Fourier analysis to prove positive solutions exist for sufficiently small values of the parameter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we consider the existence of the maximal and mean square stabilizing solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short) associated to the infinite-horizon stochastic optimal control problem of discrete-time Markov jump with multiplicative noise linear systems. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. We present a sufficient condition, based only on some positive semi-definite and kernel restrictions on some matrices, under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution fir the GCARE. We also present a solution for the discounted and long run average cost problems when the performance criterion is assumed be composed by a linear combination of an indefinite quadratic part and a linear part in the state and control variables. The paper is concluded with a numerical example for pension fund with regime switching.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate synchronization in a Kuramoto-like model with nearest neighbor coupling. Upon analyzing the behavior of individual oscillators at the onset of complete synchronization, we show that the time interval between bursts in the time dependence of the frequencies of the oscillators exhibits universal scaling and blows up at the critical coupling strength. We also bring out a key mechanism that leads to phase locking. Finally, we deduce forms for the phases and frequencies at the onset of complete synchronization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synchronizing properties of two diffusively coupled hyperchaotic Lorenz 4D systems are investigated by calculating the transverse Lyapunov exponents and by observing the phase space trajectories near the synchronization hyperplane. The effect of parameter mismatch is also observed. A simple electrical circuit described by the Lorenz 4D equations is proposed. Some results from laboratory experiments with two coupled circuits are presented. Copyright (C) 2009 Ruy Barboza.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oscillator networks have been developed in order to perform specific tasks related to image processing. Here we analytically investigate the existence of synchronism in a pair of phase oscillators that are short-range dynamically coupled. Then, we use these analytical results to design a network able of detecting border of black-and-white figures. Each unit composing this network is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the units forming the network are also dynamical. Border detection emerges from the network activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the influence of couplings among continuum states in collisions of weakly bound nuclei. For this purpose, we compare cross sections for complete fusion, breakup, and elastic scattering evaluated by continuum discretized coupled channel (CDCC) calculations, including and not including these couplings. In our study, we discuss this influence in terms of the polarization potentials that reproduces the elastic wave function of the coupled channel method in single channel calculations. We find that the inclusion of couplings among continuum states renders the real part of the polarization potential more repulsive, whereas it leads to weaker absorption to the breakup channel. We show that the noninclusion of continuum-continuum couplings in CDCC calculations may lead to qualitative and quantitative wrong conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angular distributions for the elastic scattering of (8)B, (7)Be, and (6)Li on a (12)C target have been measured at E(lab) = 25.8, 18.8, and 12.3 MeV, respectively. The analyses of these angular distributions have been performed in terms of the optical model using Woods-Saxon and double-folding type potentials. The effect of breakup in the elastic scattering of (8)B + (12)C is investigated by performing coupled-channels calculations with the continuum discretized coupled-channel method and cluster-model folding potentials. Total reaction cross sections were deduced from the elastic-scattering analysis and compared with published data on elastic scattering of other weakly and tightly bound projectiles on (12)C, as a function of energy. With the exception of (4)He and (16)O, the data can be described using a universal function for the reduced cross sections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of interlayer coupling on the formation of the quantized Hall phase at the filling factor nu=2 was studied in multilayer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to localized electrons was found in the quantized Hall phase of the isolated multi-quanturn-well structure. On the other hand, the quantized Hall phase of weakly coupled multilayers emitted an unexpected asymmetrical line similar to that observed in metallic electron systems. We demonstrated that the observed asymmetry is caused by the partial population of extended electron states formed in the insulating quantized Hall phase due to spin-assisted interlayer percolation. A sharp decrease in the single-particle scattering time associated with these extended states was observed for the filling factor nu=2. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2978194]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical renormalization-group study of the conductance through a quantum wire containing noninteracting electrons side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of the conductance are examined in the light of a recently derived linear mapping between the temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown to control the current through the bypass. When the potential favors transport through the wire, the conductance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures. When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero. When comparable currents flow through the two channels, the conductance is nearly temperature independent in the Kondo regime, and Fano antiresonances in the fixed-temperature plots of the conductance as a function of the dot-energy signal interference between them. Throughout the Kondo regime and, at low temperatures, even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.