104 resultados para COLLAGEN INJECTION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Introduction and objectives: Recurrent transplant pyelonephritis (RTP) secondary to vesico-ureteral reflux (VUR) to the transplant kidney (KTx) remains a significant cause of infectious complications with impact on patient and graft outcomes. Our objective was to verify the safety and efficacy of transurethral injection of Durasphere (R) to relieve RTP secondary to VUR after renal transplantation. Patients and methods: Between June 2004 and July 2008, eight patients with RTP (defined as two or more episodes of pyelonephritis after transplantation) and VUR to the KTx were treated with subureteral injections of Durasphere (R). The mean age at surgery was 38.8 +/- 13.8 yr (23-65). The patients were followed regularly every six months. The mean interval between the KTx and the treatment was 76 +/- 74.1 (10-238 months). The mean follow-up was 22.3 +/- 16.1 months (8-57 months). Results: Six patients (75%) were free of pyelonephritis during a mean period of follow-up of 23.2 +/- 17.1 months (8-57 months). Two of them had no VUR and four cases presented with G II VUR (pre-operative G IV three cases and one case G III). In one case, symptomatic recurrent cystitis made a second treatment necessary. This patient remained free of infections for three yr after the first treatment and for 18 months after the second treatment. Of the remaining two patients, one had six episodes of RTP before treatment in a period of three yr and only two episodes after treatment in two yr of follow-up. The last case had a new episode of pyelonephritis five months after treatment. Conclusions: Transurethral injection therapy with Durasphere (R) is a safe and effective minimally invasive treatment option for KTx patients with recurrent RTP. A second treatment seems to be necessary in some cases.
Resumo:
Background: Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. Methodology/Principal Findings: In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. Conclusions/Significance: These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.
Resumo:
The effect of intra-bone injection of differentiated rat bone marrow mesenchymal stem cells (BMMSCs) into the femur of osteoporotic female rats was studied. Osteoporosis was induced in Wistar female rats by bilateral ovariectomy. Then, 0.75 million BMMSCs isolated from healthy rats were injected into the femurs of osteoporotic rats. Histomorphometric analysis and histology clearly revealed improvements in the treated group as compared to untreated group. In 2 months, the femurs of treated rats, unlike untreated rats, showed trabecular bone percentage almost similar to the femurs from control healthy rats. To confirm the origin of newly formed bone, the experiment was repeated with BMMSCs isolated from green fluorescent protein transgenic rats. Confocal microscopy demonstrated green fluorescent protein-positive cells at the surface of trabecular bone of the treated rats. We investigated in vitro osteogenic differentiation of BMMSCs isolated from osteoporotic rats by studying alkaline phosphatase activity, collagen synthesis, and the ability to form mineralized nodules. Osteoporotic BMMSCs showed less differentiation capabilities as compared to those isolated from healthy rats. The results clearly demonstrated the importance of BMMSCs in osteoporosis and that the disease can be treated by injection of BMMSCs.
Resumo:
Objectives: Injectable corticosteroids have been used in phonosurgery to prevent scarring of the vocal fold because of their effects of wound healing, and to ensure better voice quality. We histologically evaluated the effects of dexamethasone sodium phosphate infiltration on acute vocal fold wound healing in rabbits 3 and 7 days after surgically induced injury by quantification of the inflammatory reaction and collagen deposition. Methods: A standardized surgical incision was made in the vocal folds of 12 rabbits, and 0.1 mL dexamethasone sodium phosphate (4 mg/mL) was injected into the left vocal fold. The right vocal fold was not injected and served as the control. The larynges were collected 3 and 7 days after surgery. For histologic analysis, the vocal folds were stained with hematoxylin-eosin for quantification of the inflammatory response and with picrosirius red for qunatification of collagen depostion. Results: There was no quantitative difference in the inflammatory response between vocal folds injected with the corticosteroid and control vocal folds. However, the rate of collage deposition was significantly lower in the corticosteroid-treated group at 3 and 7 days after injury (p = 0.002). Conclusions: The present results suggest that dexamethasone reduces collagen depostion during acute vocal fold wound healing.
Resumo:
The aim of this study was to evaluate the bone repair using autogenous periosteum-derived cells (PDC) and bovine anorganic apatite and collagen (HA-COL). PDC from Wistar rats (n=10) were seeded on HA-COL discs and subjected to osteoinduction during 6 days. Critical-size defects in rat calvarias were treated with blood clot (G1), autogenous bone (G2), HA-COL (G3) and HA-COL combined with PDC (G4) (n=40), and then analyzed 1 and 3 months after surgeries. Radiographic analysis exhibited no significant temporal change. G1 and G2 had discrete new marginal bone, but the radiopacity of graft materials in G2, G3 and G4 impaired the detection of osteogenesis. At 3 months, histopathological analysis showed the presence of ossification islets in G1, which was more evident in G2, homogeneous new bone around HA-COL in G3 and heterogeneous new bone around HA-COL in G4 in addition to moderate presence of foreign body cells in G3 and G4. Histomorphometric analysis showed no change in the volume density of xenograft (p>0.05) and bone volume density in G2 was twice greater than in G1 and G4 after 3 months (p<0.05), but similar to G3. The PDC did not increase bone formation in vivo, although the biomaterial alone showed biocompatibility and osteoconduction capacity.
Resumo:
In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.
Resumo:
PURPOSE: To evaluate the corneal vascularization (CV) and the clinical aspects induced by interlamellar graft with native (NCM) and anionic (ACM) collagen membranes in rabbits corneas. METHODS: An interlamellar graft with a 0.25 x 0.25 cm NCM (group 1) or ACM (group 2) fragment was performed in the right eye (treated eye). In the left eye, an estromal tunnel was done (control eye). Sixteen rabbits were used, and they were subdivided into two experimental groups of eight animals each. The clinical evaluation was performed at the 1st, 3rd, 7th, 15th and 30th postoperative days. Corneal vascularization analysis was performed after 30 days by the Images Analizator System Leica Qwin-550®. RESULTS: After 7 days, corneal vascularization was observed at about 2.25 ± 0.71 mm (NCM) and at about 1.0 ± 1.69 mm (ACM), respectively, from the limbus in direction to the central cornea. After 15 days, CV increased in both groups (5.25 ± 1.03 mm - NCM; 2.0 ± 2.39 mm - ACM) and then progressively decreased until day 30 (2.25 ± 2.10 mm - NCM; 0.75 ± 2.12 mm - ACM). The statistical analysis indicated that the averages of the distances from the limb vessels to the grafts observed after 7 and 15 days had not differed statistically (p=0.17), and after 15 and 30 postoperative days had a tendency to differ statistically (p=0.09). The control eyes did not present any changes. CONCLUSION: The interlamellar graft with native and anionic collagen membranes induced corneal vascularization when applied to rabbit corneas, but anionic collagen membrane induced a smaller corneal vascularization when compared to native collagen membrane. Although further studies are required, the results found in this study demonstrated the usefulness of interlamellar graft with native and anionic collagen membranes in keratoplasties. These membranes consists in one more graft option for the surgical treatment of corneal repair in rabbits and others animals, when other forms of medical and surgical treatment are not effective.
Resumo:
This paper describes a sequential injection chromatography procedure for determination of picloram in waters exploring the low backpressure of a 2.5 cm long monolithic C18 column. Separation of the analyte from the matrix was achieved in less than 60 s using a mobile phase composed by 20:80 (v v-1) acetonitrile:5.0 mmol L-1 H3PO4 and flow rate of 30 μL s-1. Detection was made at 223 nm with a 40 mm optical path length cell. The limits of detection and quantification were 33 and 137 μg L-1, respectively. The proposed method is sensitive enough to monitor the maximum concentration level for picloram in drinking water (500 μg L-1). The sampling frequency is 60 analyses per hour, consuming only 300 μL of acetonitrile per analysis. The proposed methodology was applied to spiked river water samples and no statistically significant differences were observed in comparison to a conventional HPLC-UV method.
Resumo:
This work describes a photo-reactor to perform in line degradation of organic compounds by photo-Fenton reaction using Sequential Injection Analysis (SIA) system. A copper phthalocyanine-3,4',4²,4²¢-tetrasulfonic acid tetrasodium salt dye solution was used as a model compound for the phthalocyanine family, whose pigments have a large use in automotive coatings industry. Based on preliminary tests, 97% of color removal was obtained from a solution containing 20 µmol L-1 of this dye.
Resumo:
Buffalo is an important livestock resource, with a great participation in agricultural systems, providing milk, meat, and work power. Umbilical cord is responsible for maternal-fetal nutrients exchange during pregnancy, and its alterations can compromise the fetal development. We investigated ten pregnant uteruses collected from cross-bread buffaloes in different stages of gestation. Pregnancy and fetal age was determined by measuring the apex sacral length and development period was calculated by previously published formula. Umbilical cords were measured for length determination. Umbilical cord vascular net and anastomosis were observed by injection of Neoprene latex. Histological sections of the umbilical cord were studied after stain with HE, picrossirius, toluidine blue, orceine, and PAS reaction. Buffaloes' umbilical cord was formed by two central arteries, an allantois duct and two peripheral veins. The artery wall was composed by large quantity of collagen, elastic fibers, fibroblasts and large number of vasa vasorum. The allantois duct was located between the arteries and presented a great number of small nourishing vessels. Small nourishing vessels should be carefully considered to avoid to be mistaken to the arterials and veins vasa vasorum. Medium length of umbilical cord from buffalos was 11.8cm (minimum of 6.8cm and maximum of 17.4cm).
Resumo:
CONTEXT: Hepatic fibrosis occurs in response to several aggressive agents and is a predisposing factor in cirrhosis. Hepatotrophic factors were shown to stimulate liver growth and to restore the histological architecture of the liver. They also cause an improvement in liver function and accelerate the reversion of fibrosis before it progresses to cirrhosis. OBJECTIVE: To test the effects of hepatic fibrosis solution composed by amino acids, vitamins, glucose, insulin, glucagon and triiodothyronine on hepatic fibrosis in rats. METHODS: Fibrosis was induced in rats by gastric administration of dimethylnitrosamine (10 mg/kg) for 5 weeks. After liver biopsy, the rats received either hepatotrophic factors solution (40 mg/kg/day) or saline solution for 10 days by intraperitoneal injection. Blood samples and liver fragments were collected for hepatic function analysis, standard histopathology evaluation, and morphometric collagen quantification. RESULTS: Rats in the hepatotrophic factors group showed a decrease of the histopathological components of fibrosis and an increase of their hepatic mass (12.2%). There was no development of neoplasic lesions in both groups. Compared with the saline group, the hepatotrophic factors group also had a decrease of blood levels of hepatic-lesion markers (AST, ALT) and a decrease of collagen content in the portal spaces (31.6%) and perisinusoidal spaces (42.3%), as well as around the hepatic terminal vein (57.7%). Thus, hepatotrophic factors administration in the portal blood promoted a regenerative hepatic response, with an overall reduction of the volumetric density of collagen, improved hepatic function, and a general improvement in the histopathological aspects of fibrosis. CONCLUSION: Taken together, these results suggest the potential therapeutic use of this hepatotrophic factors solution to treat chronic liver diseases.
Resumo:
Background: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs) with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI). Methodology/Principal Findings: (99m)Tc-labeled ASCs (1 x 10(6) cells) isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C), or culture medium (ASC/M) as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively). Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV) perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT) and control groups (culture medium, fibrin, or collagen alone). Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV) and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW), a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. Conclusions: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administrating co-injection of ASCs with biopolymers.
Resumo:
Background: Cell therapy approaches for biologic cardiac repair hold great promises, although basic fundamental issues remain poorly understood. In the present study we examined the effects of timing and routes of administration of bone marrow cells (BMC) post-myocardial infarction (MI) and the efficacy of an injectable biopolymer scaffold to improve cardiac cell retention and function. Methodology/Principal Findings: (99m)Tc-labeled BMC (6x10(6) cells) were injected by 4 different routes in adult rats: intravenous (IV), left ventricular cavity (LV), left ventricular cavity with temporal aorta occlusion (LV(+)) to mimic coronary injection, and intramyocardial (IM). The injections were performed 1, 2, 3, or 7 days post-MI and cell retention was estimated by gamma-emission counting of the organs excised 24 hs after cell injection. IM injection improved cell retention and attenuated cardiac dysfunction, whereas IV, LV or LV* routes were somewhat inefficient (< 1%). Cardiac BMC retention was not influenced by timing except for the IM injection that showed greater cell retention at 7 (16%) vs. 1, 2 or 3 (average of 7%) days post-MI. Cardiac cell retention was further improved by an injectable fibrin scaffold at day 3 post-MI (17 vs. 7%), even though morphometric and function parameters evaluated 4 weeks later displayed similar improvements. Conclusions/Significance: These results show that cells injected post-MI display comparable tissue distribution profile regardless of the route of injection and that there is no time effect for cardiac cell accumulation for injections performed 1 to 3 days post-MI. As expected the IM injection is the most efficient for cardiac cell retention, it can be further improved by co-injection with a fibrin scaffold and it significantly attenuates cardiac dysfunction evaluated 4 weeks post myocardial infarction. These pharmacokinetic data obtained under similar experimental conditions are essential for further development of these novel approaches.
Resumo:
Sinovitis in Scleroderma (SSc) is rare, usually aggressive and fully resembles rheumatoid arthritis. Experimental models of SSc have been used in an attempt to understand its pathogenesis. Previous studies done in our laboratory had already revealed the presence of a synovial remodeling process in rabbits immunized with collagen V. To validate the importance of collagen type V and to explore the quantitative relationship between this factor and synovia remodeling as well as the relationship between collagen type V and other collagens, we studied the synovial tissue in immunized rabbits. Rabbits (N= 10) were immunized with collagen V plus Freund's adjuvant and compared with animals inoculated with adjuvant only (N= 10). Synovial tissues were submitted to histological analysis, immunolocalization to collagen I, III and V and biochemical analysis by eletrophoresis, immunoblot and densitometric method. The synovial tissue presented an intense remodeling process with deposits of collagen types I, III and V after 75 and 120 days of immunization, mainly distributed around the vessels and interstitium of synovial extracellular matrix. Densitometric analysis confirmed the increased synthesis of collagen I, III and V chains (407.69 +/- 80.31; 24.46 +/- 2.58; 70.51 +/- 7.66, respectively) in immunized rabbits when compared with animals from control group (164.91 +/- 15.67; 12.89 +/- 1.05; 32 +/- 3.57) (p<0.0001). We conclude that synovial remodeling observed in the experimental model can reflect the articular compromise present in patients with scleroderma. Certainly, this experimental model induced by collagen V immunization will bring new insights in to pathogenic mechanisms and allow the testing of new therapeutic strategies to ameliorate the prognosis for scleroderma patients.
Resumo:
Background: The purpose of this study was to evaluate collagen deposition, mRNA collagen synthesis and TGFbeta expression in the lung tissue in an experimental model of scleroderma after collagen V-induced nasal tolerance. Methods: Female New Zealand rabbits (N = 12) were immunized with 1 mg/ml of collagen V in Freund's adjuvant (IM). After 150 days, six immunized animals were tolerated by nasal administration of collagen V ( 25 mu g/day) (IM-TOL) daily for 60 days. The collagen content was determined by morphometry, and mRNA expressions of types I, III and V collagen were determined by Real-time PCR. The TGF-beta expression was evaluated by immunostaining and quantified by point counting methods. To statistic analysis ANOVA with Bonferroni test were employed for multiple comparison when appropriate and the level of significance was determined to be p < 0.05. Results: IM-TOL, when compared to IM, showed significant reduction in total collagen content around the vessels (0.371 +/- 0.118 vs. 0.874 +/- 0.282, p < 0.001), bronchioles (0.294 +/- 0.139 vs. 0.646 +/- 0.172, p < 0.001) and in the septal interstitium (0.027 +/- 0.014 vs. 0.067 +/- 0.039, p = 0.026). The lung tissue of IM-TOL, when compared to IM, showed decreased immunostaining of types I, III and V collagen, reduced mRNA expression of types I (0.10 +/- 0.07 vs. 1.0 +/- 0.528, p = 0.002) and V (1.12 +/- 0.42 vs. 4.74 +/- 2.25, p = 0.009) collagen, in addition to decreased TGF-beta expression ( p < 0.0001). Conclusions: Collagen V-induced nasal tolerance in the experimental model of SSc regulated the pulmonary remodeling process, inhibiting collagen deposition and collagen I and V mRNA synthesis. Additionally, it decreased TGF-beta expression, suggesting a promising therapeutic option for scleroderma treatment.