24 resultados para Aggressive periodontitis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Aggressive periodontitis is a specific form of periodontal disease that is characterized by rapid attachment loss and bone destruction. Cytokine profiles are of considerable value when studying disease course during treatment. The aim of this trial was to investigate cytokine levels in the gingival crevicular fluid (GCF) of patients with aggressive periodontitis, after treatment with photodynamic therapy (PDT) or scaling and root planing (SRP), in a split-mouth design on -7, 0, +1, +7, +30, and +90 days. Methods: Ten patients were randomly treated with PDT using a laser source associated with a photosensitizer or SRP with hand instruments. GCF samples were collected, and the concentrations of tumor necrosis factor-alpha (TNF-alpha) and receptor activator of nuclear factor-kappa B ligand (RANKL) were determined by enzyme-linked immunosorbent assays. The data were analyzed using generalized estimating equations to test the associations among treatments, evaluated parameters, and experimental times (alpha = 0.05). Results: Non-surgical periodontal treatment with PDT or SRP led to statistically significant reductions in TNF-alpha level 30 days following treatment. There were similar levels of TNF-alpha and RANKL at the different time points in both groups, with no statistically significant differences. Conclusion: SRP and PDT had similar effects on crevicular TNF-alpha and RANKL levels in patients with aggressive periodontitis. J Periodontol 2009;80:98-105.
Resumo:
Background/aim: The purpose of this study was to determine the bacterial diversity in the subgingival plaque of subjects with generalized aggressive periodontitis by using culture-independent molecular methods based on 16S ribosomal DNA cloning. Methods: Samples from 10 subjects with generalized aggressive periodontitis were selected. DNA was extracted and the 16S rRNA gene was amplified with the universal primer pairs 9F and 1525R. Amplified genes were cloned, sequenced, and identified by comparison with known 16S rRNA sequences. Results: One hundred and ten species were identified from 10 subjects and 1007 clones were sequenced. Of these, 70 species were most prevalent. Fifty-seven percent of the clone (40 taxa) sequences represented phylotypes for which no cultivated isolates have been reported. Several species of Selenomonas and Streptococcus were found at high prevalence and proportion in all subjects. Overall, 50% of the clone libraries were formed by these two genera. Selenomonas sputigena, the species most commonly detected, was found in nine of 10 subjects. Other species of Selenomonas were often present at high levels, including S. noxia, Selenomonas sp. EW084, Selenomonas sp. EW076, Selenomonas FT050, Selenomonas sp. P2PA_80, and Selenomonas sp. strain GAA14. The classical putative periodontal pathogens, such as, Aggregatibacter actinomycetemcomitans, was below the limit of detection and was not detected. Conclusion: These data suggest that other species, notably species of Selenomonas, may be associated with disease in generalized aggressive periodontitis subjects.
Resumo:
P>Aim To investigate the diversity, levels and proportions of Archaea in the subgingival biofilm of generalized aggressive periodontitis (GAgP; n=30) and periodontally healthy (PH; n=30) subjects. Materials and methods Diversity was determined by sequencing archaeal 16S rRNA gene libraries from 20 samples (10/group). The levels and proportions of Archaea were analysed by quantitative PCR (qPCR) in four and two samples/subject in GAgP and PH groups, respectively. Results Archaea were detected in 27/28 subjects and 68% of the sites of the GAgP group, and in 26/30 subjects and 58.3% sites of the PH group. Methanobrevibacter oralis was found in all 20 samples studied, Methanobacterium curvum/congolense in three GAgP and six PH samples, and Methanosarcina mazeii in four samples from each group. The levels and proportions of Archaea were higher in GAgP than in PH, whereas no differences were observed between the two probing depth category sites from the GAgP group. Conclusion Archaea were frequently found in subjects with periodontal health and GAgP, especially M. oralis. However, the higher levels and proportions (Archaea/total prokaryotes) of this domain observed in GAgP in comparison with PH subjects indicate a possible role of some of these microorganisms as an environmental modifier in GAgP.
Resumo:
Aim The microbial profile of localized aggressive periodontitis (LAgP) has not yet been determined. Therefore, the aim of this study was to evaluate the subgingival microbial composition of LAgP. Material and Methods One hundred and twenty subjects with LAgP (n=15), generalized aggressive periodontitis (GAgP, n=25), chronic periodontitis (ChP, n=30) or periodontal health (PH, n=50) underwent clinical and microbiological assessment. Nine subgingival plaque samples were collected from each subject and analysed for their content of 38 bacterial species using checkerboard DNA-DNA hybridization. Results Red complex and some orange complex species are the most numerous and prevalent periodontal pathogens in LAgP. The proportions of Aggregatibacter actinomycetemcomitans were elevated in shallow and intermediate pockets of LAgP subjects in comparison with those with GAgP or ChP, but not in deep sites. This species also showed a negative correlation with age and with the proportions of red complex pathogens. The host-compatible Actinomyces species were reduced in LAgP. Conclusion A. actinomycetemcomitans seems to be associated with the onset of LAgP, and Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Campylobacter gracilis, Eubacterium nodatum and Prevotella intermedia play an important role in disease progression. Successful treatment of LAgP would involve a reduction in these pathogens and an increase in the Actinomyces species.
Resumo:
The purpose of this study was to evaluate the effect of a single application of antimicrobial photodynamic therapy (aPDT) on microbiological profile and cytokine pattern in dogs. Periodontal disease was induced by placing 3.0 silk ligatures around the mandibular pre-molars bilaterally during 8 weeks. The dogs were randomly treated with aPDT using a dye/laser system, scaling and root planning (SRP), or with the association of treatments (SRP + aPDT). Plaque samples were collected at baseline, 1, 3, and 4 weeks, and the mean counts of 40 species were determined using DNA-DNA hybridization. Gingival biopsies were removed and the expression of tumor necrosis factor alpha (TNF-alpha), receptor activator of NF-kB ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase (MMP-1), interleukin (IL) 6, IL-10 and total bacterial load by analysis of 16 S rRNA gene were evaluated through real-time PCR. The results shows that the levels of the majority of the species were reduced 1 week post-therapy for all treatments, however, an increase in counts of Prevotella intermedia (p = 0.00), Prevotella. nigrescens (p = 0.00) and Tannerella forsythia (p = 0.00) was observed for aPDT and SRP + aPDT. After 4 weeks, a regrowth of Porphyromonas gingivalis (p = 0.00) and Treponema denticola (p = 0.00), was observed for all treatments. Also, a strikingly reduction of counts on counts of Aggregatibacter actinomycetemcomitans was observed for the aPDT (p = 0.00). For the cytokine pattern, the results were similar for all treatments, and a reduction in the expression of cytokines and bacterial load was observed throughout the study. Our results suggest that SRP, aPDT in a single application, and SRP + aPDT affects different bacterial species and have similar effects on the expression of cytokines evaluated during the treatment of ligature-induced periodontitis.
Resumo:
Background and Objective: Cytolethal distending toxin (CDT) is a genotoxin produced by Aggregatibacter actinomycetemcomitans. In spite of its association with pathogenesis, little is known about the humoral immune response against the CDT. This study aimed to test whether subgingival colonization and humoral response to A. actinomycetemcomitans would lead to a response against CDT. Material and Methods: Sera from periodontally healthy, localized and generalized aggressive periodontitis and chronic periodontitis subjects (n = 80) were assessed for immunoglobulin G titers to A. actinomycetemcomitans serotypes a/b/c and to each CDT subunit (CdtA, CdtB and CdtC) by ELISA. A. actinomycetemcomitans subgingival levels and neutralization of CDT activity were also analyzed. Results: Sera from 75.0% localized and 81.8% generalized aggressive periodontitis patients reacted to A. actinomycetemcomitans. A response to serotype b was detected in localized (66.7%) and generalized aggressive periodontitis (54.5%). Reactivity to A. actinomycetemcomitans correlated with subgingival colonization (R = 0.75, p < 0.05). There was no correlation between A. actinomycetemcomitans colonization or response to serotypes and the immunoglobulin G response to CDT subunits. Titers of immunoglobulin G to CdtA and CdtB did not differ among groups; however, sera of all generalized aggressive periodontitis patients reacted to CdtC. Neutralization of CDT was not correlated with levels of antibodies to CDT subunits. Conclusion: Response to CdtA and CdtB did not correlate with the periodontal status of the subject in the context of an A. actinomycetemcomitans infection. However, a response to CdtC was found in sera of generalized but not of localized aggressive periodontitis subjects. Differences in response to CdtC between generalized and localized aggressive periodontitis subjects indicate that CDT could be expressed differently by the infecting strains. Alternatively, the antibody response to CdtC could require the colonization of multiple sites.
Resumo:
Background and Objective: This study evaluated the prevalence and the molecular diversity of Archaea in the subgingival biofilm samples of subjects with peri-implantitis. Material and Methods: Fifty subjects were assigned into two groups: Control (n = 25), consisting of subjects with healthy implants; and Test (n = 25), consisting of subjects with peri-implantitis sites, as well as a healthy implant. In the Test group, subgingival biofilm samples were taken from the deepest sites of the diseased implant. In both groups, subgingival biofilm was collected from one site with a healthy implant and from one site with a periodontally healthy tooth. DNA was extracted and the 16S ribosomal RNA gene was amplified with universal primer pairs for Archaea. Amplified genes were cloned and sequenced, and the phylotypes were identified by comparison with known 16S ribosomal RNA sequences. Results: In the Control group, Archaea were detected in two and three sites of the implant and the tooth, respectively. In the Test group, Archaea were detected in 12, 4 and 2 sites of diseased implants, healthy implants and teeth, respectively. Diseased implants presented a significantly higher prevalence of Archaea in comparison with healthy implants and natural teeth, irrespective of group. Over 90% of the clone libraries were formed by Methanobrevibacter oralis, which was detected in both groups. Methanobacterium congelense/curvum was detected in four subjects from the Test group and in two subjects from the Control group. Conclusion: Although M. oralis was the main species of Archaea associated with both healthy and diseased implant sites, the data indicated an increased prevalence of Archaea in peri-implantitis sites, and their role in pathogenesis should be further investigated.
Resumo:
Introduction: Very little is known of the diversity and expression of virulence factors of serotypes of Aggregatibacter actinomycetemcomitans. Toxic activity on Chinese hamster ovary (CHO) cells and cdt and ltx genotyping were evaluated in A. actinomycetemcomitans serotypes. Methods: Forty-one A. actinomycetemcomitans isolates were analysed for CHO cell growth inhibition. Genotyping was performed by polymerase chain reactions specific to the ltx promoter region, serotype-specific and cdt region and by sequencing of cdtB. Results: cdtABC was detected in 40 strains. Analysis of the cdtA upstream region revealed 10 cdt genotypes. Toxicity to CHO cells was detected for 92.7% of the isolates; however, no correlation between the toxic activity and the cdt genotype was detected. Serotype c was more prevalent among Brazilian samples (68.0%). Four serotype b isolates from subjects with aggressive periodontitis were associated with high leukotoxin production and exhibited moderate to strong toxic activity in CHO cells, but were classified in different cdt genotypes. High levels of toxicity in CHO cells were not associated with a particular serotype; 57.1% of serotype a isolates presented low toxicity to CHO cells whereas the highly toxic strains belonged to serotypes b and c. Sequencing of cdtB revealed a single nucleotide polymorphism of amino acid 281 but this was not related to the toxic activity in CHO cells. Conclusion: Differences in prevalence of the low and highly cytotoxic strains among serotypes reinforce the hypothesis that serotype b and c isolates of A. actinomycetemcomitans are more virulent than serotype a strains.
Resumo:
Background and Objective: Although certain serotypes of Aggregatibacter actinomycetemcomitans are associated more with aggressive periodontitis than are other serotypes, the correlation between distinct lineages and virulence traits in this species is poorly understood. This study aimed to evaluate the polymorphism of genes encoding putative virulence factors of clinical isolates, and to correlate these findings with A. actinomycetemcomitans serotypes, genotypes and periodontal status of the hosts. Material and Methods: Twenty-six clinical isolates from diverse geographic populations with different periodontal conditions were evaluated. Genotyping was performed using pulse-field gel electrophoresis. Polymorphisms in the genes encoding leukotoxin, Aae, ApaH and determinants for serotype-specific O polysaccharide were investigated. Results: The isolates were classified into serotypes a-f, and exhibited three apaH genotypes, five aae alleles and 25 macrorestriction profiles. Two serotype b isolates (7.7%), obtained from Brazilian patients with aggressive periodontitis, were associated with the highly leukotoxic genotype; these isolates showed identical fingerprint patterns and aae and apaH genotypes. Serotype c, obtained from various periodontal conditions, was the most prevalent among Brazilian isolates, and isolates were distributed in two aae alleles, but formed a genetically distinct group based on apaH analysis. Cluster analysis showed a close relationship between fingerprinting genotypes and serotypes/apaH genotypes, but not with aae genotypes. Conclusion: Apart from the deletion in the ltx promoter region, no disease-associated markers were identified. Non-JP2-like strains recovered from individuals with periodontal disease exhibited considerable genetic variation regarding aae/apaH genotypes, serotypes and XhoI DNA fingerprints.
Resumo:
Background: Diabetes and periodontitis produce a protein discharge that can be reflected in saliva. This study evaluates the salivary concentrations of interleukin (IL)-6, matrix metalloproteinase (MMP)-8, and osteoprotegerin (OPG) in patients with periodontitis with type 2 diabetes. Methods: Whole saliva samples were obtained from 90 subjects who were divided into four groups: healthy (control; n = 22), untreated periodontitis (UPD; n = 24), diabetes mellitus (DM; n = 20), and UPD + DM (n = 24) groups. Clinical and metabolic data were recorded. Salivary IL-6, MMP-8, and OPG concentrations were determined by a standard enzyme-linked immunosorbent assay. Results: The UPD and UPD + DM groups exhibited higher salivary IL-6 than the control and DM groups (P <0.01). The salivary MMP-8 concentrations in all diseased groups (UPD, DM, and UPD + DM) were higher than in the control group (P <0.01). The salivary OPG concentrations in the DM group were higher than in the UPD and control groups (P<0.05). In the UPD + DM group, salivary IL-6 was correlated with glycated hemoglobin (HbA1c) levels (r = 0.60; P<0.05). The regression analysis indicated that the number of remaining teeth, clinical attachment level, and IL-6 might have influenced the HbA1c levels in patients with diabetes. Conclusions: Salivary 1L-6 concentrations were elevated in patients with periodontitis with or without diabetes. Salivary MMP-8 and OPG concentrations were elevated regardless of periodontal inflammation in patients with diabetes. Therefore, periodontitis and diabetes are conditions that may interfere with protein expression and should be considered when using saliva for diagnoses. J Periodontol 2010;81:384-391.
Resumo:
Objective. The objective of this study was to evaluate in vivo the revascularization and the apical and periapical repair after endodontic treatment using 2 techniques for root canal disinfection (apical negative pressure irrigation versus apical positive pressure irrigation plus triantibiotic intracanal dressing) in immature dogs` teeth with apical periodontitis. Study design. Two test groups of canals with experimentally induced apical periodontitis were evaluated according to the disinfection technique: Group 1, apical negative pressure irrigation (EndoVac system), and Group 2, apical positive pressure irrigation (conventional irrigation) plus triantibiotic intracanal dressing. In Group 3 (positive control), periapical lesions were induced, but no endodontic treatment was done. Group 4 (negative control) was composed of sound teeth. The animals were killed after 90 days and the maxillas and mandibles were subjected to histological processing. The sections were stained with hematoxylin and eosin and Mallory Trichrome and examined under light microscopy. A description of the apical and periapical features was done and scores were attributed to the following histopathological parameters: newly formed mineralized apical tissue, periapical inflammatory infiltrate, apical periodontal ligament thickness, dentin resorption, and bone tissue resorption. Intergroup comparisons were done by the Kruskal-Wallis and Dunn`s tests (alpha = 0.05). Results. Although statistically significant difference was found only for the inflammatory infiltrate (P < .05), Group 1 presented more exuberant mineralized formations, more structured apical and periapical connective tissue, and a more advanced repair process than Group 2. Conclusion. From the histological observations, sodium hypochlorite irrigation with the EndoVac system can be considered as a promising disinfection protocol in immature teeth with apical periodontitis, suggesting that the use of intracanal antibiotics might not be necessary. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: 779-787)
Resumo:
Introduction: The objective of this study was to investigate the expression of matrix metalloproteinases (MM Ps) in apical periodontitis and during the periapical healing phase after root canal treatment. Methods: Apical periodontitis was induced in dog teeth, and root canal treatment was performed in a single visit or by using an additional calcium hydroxide root canal dressing. One hundred eighty days after treatment the presence of inflammation was examined, and tissues were stained to detect bacteria. Bacterial status was correlated to the degree of tissue organization, and to further investigate molecules involved in this process, tissues were stained for MMP-1, MMP-2, MMP-8, and MMP-9. Data were analyzed by using one-way analysis of variance followed by Tukey test or Kruskal-Wallis followed by Dunn test. Results: Teeth with apical periodontitis that had root canal therapy performed in a single visit presented an intense inflammatory cell infiltrate. Periapical tissue was extremely disorganized, and this was correlated with the presence of bacteria. Higher MMP expression was evident, similar to teeth with untreated apical periodontitis. In contrast, teeth with apical periodontitis submitted to root canal treatment with calcium hydroxide presented a lower inflammatory cell infiltrate. This group had moderately organized connective tissue, lower prevalence of bacteria, and lower number of MMP-positive cells, similar to healthy teeth submitted to treatment. Conclusions: Teeth treated with calcium hydroxide root canal dressing exhibited a lower percentage of bacterial contamination, a lower MMP expression, and a more organized extracellular matrix, unlike those treated in a single visit. This suggests that calcium hydroxide might be beneficial in tissue repair processes. (J Endod 2010;36:231-237)
Resumo:
Introduction: The aim of this study was to evaluate the accuracy of two imaging methods in diagnosing apical periodontitis (AP) using histopathological findings as a gold standard. Methods: The periapex of 83 treated or untreated roots of dogs` teeth was examined using periapical radiography (PR), cone-beam computed tomography (CBCT) scans, and histology. Sensitivity, specificity, predictive values, and accuracy of PR and CBCT diagnosis were calculated. Results: PR detected AP in 71% of roots, a CBCT scan detected AP in 84%, and AP was histologically diagnosed in 93% (p = 0.001). Overall, sensitivity was 0.77 and 0.91 for PR and CBCT, respectively. Specificity was 1 for both. Negative predictive value was 0.25 and 0.46 for PR and CBCT, respectively. Positive predictive value was 1 for both. Diagnostic accuracy (true positives + true negatives) was 0.78 and 0.92 for PR and CBCT (p = 0.028), respectively. Conclusion: A CBCT scan was more sensitive in detecting AP compared with PR, which was more likely to miss AP when it was still present. (J Endod 2009;35:1009-1012)
Resumo:
No evidence for the role of protease-activated receptor-2 (PAR(2)) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR(2) mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR(2) potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR(2) mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1 alpha, IL-6, IL-8, and TNF-alpha, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR(2) mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR(2) may play a role in periodontal inflammation.
Resumo:
Objective: In this study we have assessed the renal and cardiac consequences of ligature-induced periodontitis in both normotensive and nitric oxide (NO)-deficient (L-NAME-treated) hypertensive rats. Materials and methods: Oral L-NAME (or water) treatment was started two weeks prior to induction of periodontitis. Rats were sacrificed 3, 7 or 14 days after ligature placement, and alveolar bone loss was evaluated radiographically. Thiobarbituric reactive species (TBARS; a lipid peroxidation index), protein nitrotyrosine (NT; a marker of protein nitration) and myeloperoxidase activity (MPO; a neutrophil marker) were determined in the heart and kidney. Results: In NO-deficient hypertensive rats, periodontitis-induced alveolar bone loss was significantly diminished. In addition, periodontitis-induced cardiac NT elevation was completely prevented by L-NAME treatment. On the other hand L-NAME treatment enhanced MPO production in both heart and kidneys of rats with periodontitis. No changes due to periodontitis were observed in cardiac or renal TBARS content. Conclusions: In addition to mediating alveolar bone loss, NO contributes to systemic effects of periodontitis in the heart and kidney. (C) 2010 Elsevier Ltd. All rights reserved.