12 resultados para Action Potential
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell ( due to the. ring of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell K(ATP) channel conductance (G(K,ATP)) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC(50) of approximately 4 mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca(2+)](i) waves to spread with a speed of approximately 80 mu m s(-1), similar to that observed experimentally in confocal [Ca(2+)](i) imaging.
Resumo:
Eugenol is a phenylpropene obtained from the essential oils of plants such as clove and basil which has ample use in dentistry. Eugenol possesses analgesic effects that may be related to the inhibition of voltage-dependent Na(+) channels and/or to the activation of TRPV1 receptors or both. In the present study, electrophysiological parameters were taken from the compound action potentials of the isolated rat sciatic nerve and from neurons of the superior cervical ganglion (SCG) impaled with sharp microelectrodes under current-clamp conditions. In the isolated rat sciatic nerve, eugenol inhibited the compound action potential in a concentration-dependent manner. Action potentials recorded from SCG neurons were inhibited by eugenol with an IC(50) of 0.31 mM. At high concentrations (2 mM), during brief applications. eugenol caused significant action potential blockade while it did not interfere with the resting membrane potential or the membrane input resistance. Surprisingly, however, at low eugenol concentrations (0.6 mM), during long time applications, a reversible reduction (by about 50%) in the input membrane resistance was observed, suggesting the possible involvement of a secondary delayed effect of eugenol to reduce neuronal excitability. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Sialostatin L (SialoL) is a secreted cysteine protease inhibitor identified in the salivary glands of the Lyme disease vector Ixodes scapularis. In this study, we reveal the mechanisms of SialoL immunomodulatory actions on the vertebrate host. LPS-induced maturation of dendritic cells from C57BL/6 mice was significantly reduced in the presence of SialoL. Although OVA degradation was not affected by the presence of SialoL in dendritic cell cultures, cathepsin S activity was partially inhibited, leading to an accumulation of a 10-kDa invariant chain intermediate in these cells. As a consequence, in vitro Ag-specific CD4(+) T cell proliferation was inhibited in a time-dependent manner by SialoL, and further studies engaging cathepsin S(-/-) or cathepsin L(-/-) dendritic cells confirmed that the immunomodulatory actions of SialoL are mediated by inhibition of cathepsin S. Moreover, mice treated with SialoL displayed decreased early T cell expansion and recall response upon antigenic stimulation. Finally, SialoL administration during the immunization phase of experimental autoimmune encephalomyelitis in mice significantly prevented disease symptoms, which was associated with impaired IFN-gamma and IL-17 production and specific T cell proliferation. These results illuminate the dual mechanism by which a human disease vector protein modulates vertebrate host immunity and reveals its potential in prevention of an autoimmune disease. The Journal of Immunology, 2009, 182: 7422-7429.
Resumo:
Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.
Resumo:
Microcystins (MCs) produced by some freshwater cyanobacterial species possess potent liver toxicity as evidenced by acute neutrophil infiltration. Here, we investigate the ability of three structurally distinct toxins (MC-LA, MC-LR, and MC-YR) to evoke neutrophil recruitment per se and their effects on migration pathways. Intravital Microscopic Studies showed that topical application of only MC-LR enhanced the numbers of rolling and adhered leukocytes in the endothelium of postcapillary mesenteric venules. The latter effects may be dependent upon induction of the synthesis and expression Of L-selectin and beta(2)-integrin in neutrophils, as assessed by flow cytometry and RT-PCR, respectively. Conversely, the three toxins promoted direct locomotion of neutrophils and enhanced their migration in response to NO, as measured by Boyden chamber assays, and increased intracellular calcium, a messenger in the chemotaxic process. In conclusion, our results show that MCs act on specific pathways of neutrophil recruitment, indicating their potential effect on neutrophils activation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Anoplin, an antimicrobial, helical decapeptide from wasp venom, looses its biological activities by mere deamidation of its C-terminus. Secondary structure determination, by circular dichroism spectroscopy in amphipathic environments, and lytic activity in zwitterionic and anionic vesicles showed quite similar results for the amidated and the carboxylated forms of the peptide. The deamidation of the C-terminus introduced a negative charge at an all-positive charged peptide, causing a loss of amphipathicity, as indicated by molecular dynamics simulations in TFE/water mixtures and this subtle modification in a peptide`s primary structure disturbed the interaction with bilayers and biological membranes. Although being poorly lytic, the amidated form, but not the carboxylated, presented ion channel-like activity on anionic bilayers with a well-defined conductance step; at approximately the same concentration it showed antimicrobial activity. The pores remain open at trans-negative potentials, preferentially conducting cations, and this situation is equivalent to the interaction of the peptide with bacterial membranes that also maintain a high negative potential inside. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The ruthenium compound [Ru(2)Cl(Ibp)(4)] (or RuIbp) has been reported to cause significantly greater inhibition of C6 glioma cell proliferation than the parent HIbp. The present study determined the effects of 0-72 h exposure to RuIbp upon C6 cell cycle distribution, mitochondrial membrane potential, reactive species generation and mRNA and protein expression of E2F1, cyclin D1, c-myc, pRb, p21, p27, p53, Ku70, Ku80, Bax, Bcl2, cyclooxygenase 1 and 2 (COX1 and COX2). The most significant changes in mRNA and protein expression were seen for the cyclin-dependent kinase inhibitors p21 and p27 which were both increased (p<0.05). The marked decrease in mitochondrial membrane potential (p<0.01) and modest increase in apoptosis was accompanied by a decrease in anti-apoptotic Bcl2 expression and an increase in pro-apoptotic Bax expression (p<0.05). Interestingly, COX1 expression was increased in response to a significant loss of prostaglandin E(2) production (p<0.001), most likely due to the intracellular action of Ibp. Future studies will investigate the efficacy of this novel ruthenium-ibuprofen complex in human glioma cell lines in vitro and both rat and human glioma cells growing under orthotopic conditions in vivo. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We investigate the perturbation series for the spectrum of a class of Schrodinger operators with potential V = 1/2 x(2) + g(m-1)x(2m)/(1 + alpha gx(2)) which generalize particular cases investigated in the literature in connection with models in laser theory and quantum field theory of particles and fields. It is proved that the series obey a modified strong asymptotic condition of order (m - 1) and have an order (m - 1) strong asymptotic series in g which are shown to be summable in the sense of Borel-Leroy method.
Resumo:
The potential profile for a model of squid axon membrane has been determined for two physiological states: resting and action states. The non-linear Poisson-Boltzmann equation has been solved by considering the volumetric charge densities due to charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmatic proteins. Results showing the features of the potential profile along the outer electrolytic region are similar for both resting and action states. However, the potential fall along glycocalyx at action state is lower than at resting. A small variation in the Na+ concentration drastically affects the surface membrane potentials and vice versa. We conclude that effects on the potential profile due to surface lipidic bilayer charge and contiguous electric double layers are more relevant than those provoked by fixed charges distributed along the cell cytoplasm. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background and purpose: The discovery of the pharmacological functions of nitric oxide has led to the development of NO donor compounds as therapeutic agents. A new generation of ruthenium NO donors, cis-[Ru(NO)(bpy)(2)L]X(n) , has been developed, and our aim was to show that these complexes are able to lyse Trypanosoma cruzi in vitro and in vivo. Experimental approach: NO donors were incubated with T. cruzi and their anti-T. cruzi activities evaluated as the percentage of lysed parasites compared to the negative control. In vivo, trypanocidal activity was evaluated by observing the levels of parasitaemia, survival rate and elimination of amastigotes in mouse myocardial tissue. The inhibition of GAPDH was monitored by the biochemical reduction of NAD+ to NADH. Key results: The NO donors cis-[Ru(NO)(bpy)(2)L]X(n) presented inhibitory effects on T. cruzi GAPDH (IC(50) ranging from 89 to 153 mu M). The crystal structure of the enzyme shows that the inhibitory mechanism is compatible with S-nitrosylation of the active cysteine (cys166) site. Compounds cis-[Ru(NO)(bpy)(2)imN](PF(6))(3) and cis-[Ru(NO)(bpy)(2)SO(3)]PF(6), at a dose of 385 nmol center dot kg-1, yielded survival rates of 80 and 60%, respectively, in infected mice, and eradicated any amastigotes from their myocardial tissue. Conclusions and implications: The ruthenium compounds exhibited potent in vitro and in vivo trypanocidal activities at doses up to 1000-fold lower than the clinical dose for benznidazole. Furthermore, one mechanism of action of these compounds is via the S-nitrosylation of Cys166 of T. cruzi GAPDH. Thus, these compounds show huge potential as candidates for the development of new drugs for the treatment of Chagas`s disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Guedes et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00576.x.
Resumo:
Some oxindole-Schiff base copper(II) complexes have already shown potential antitumor activity towards different cells, inducing apoptosis in a process modulated by the ligand, and having nuclei and mitochondria as main targets. Here, three novel copper(II) complexes with analogous ligands were isolated and characterized by spectroscopic techniques, having their reactivity compared to the so far most active complex in this class. Cytotoxicity experiments carried out toward human neuroblastoma SH-SY5Y cells confirmed its proapoptosis property. DNA cleavage studies were then performed in the presence of these complexes, in order to verify the influence of ligand structural features in its nuclease activity. All of them were able to cause double-strand DNA scissions, giving rise to nicked circular Form II and linear Form III species, in the presence of hydrogen peroxide. Additionally, DNA Form II was also detected in the absence of peroxide when the most active complex, [Cu(isaepy)(2)](2+) 1, was used. In an effort to better elucidate their interactions with DNA, solutions of the different complexes titrated with DNA had their absorption spectra monitored. An absorbance hyperchromism observed at 260 nm pointed to the intercalation of these complexes into the DNA structure. Further, investigations of 2-deoxy-D-ribose (DR) oxidation catalyzed by each of those complexes, using 2-thiobarbituric acid reactive species (TBARS) method, and detection of reactive oxygen species (ROS) formation by spin-trapping EPR, suggested that their mechanism of action in performing efficiently DNA cleavage occurs preferentially, but not only by oxidative pathways. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The electroanalytical techniques are very promissing to perform the quality control of crude vegetable. Solid State Differential Pulse Voltammetry in the supporting electrolyte is able to detect the oxidation signals of the active material, which can be used as a parameter to identify the type of crude vegetable and its antioxidant activity. The working electrode consisted in a carbon paste electrode modified with the powder of vegetable raw material (EMF). The electrochemical measurements were performed in a cell containing the working (EMF), reference (Ag/AgCl, KClsat) and auxiliary (Pt) electrodes.