6 resultados para Acid catalyst

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The acid hydrolysis of cellulose with crystalline and amorphous fractions is analyzed on the basis of autocatalytic model with a positive feedback of acid production from the degraded biopolymer. In the condition of low acid rate production compared with hydrolysis rate, both fraction of cellulose decrease exponentially with linear and cubic time dependence, and the normalized number of scissions per cellulose chain follows a sigmoid behavior with reaction time. The model predicts that self generated acidic compounds from cellulose accelerate the degradation of the biopolymer. However, if the acidic compounds produced are volatile species, then their release under low pressure will reduce the global rate of degradation of cellulose toward its intrinsic rate value determined by the residual acid catalyst present in the starting material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trehalase (EC 3.2.1.28) hydrolyzes only alpha, alpha`- trehalose and is present in a variety of organisms, but is most important in insects and fungi. Crystallographic data showed that bacterial trehalase has 0312 and E496 as the catalytical residues and three Arg residues in the active site. Those residues have homologous in all family 37 trehalases including Spodoptera frugiperda trehalase (0322, E520, R169, R227, R287). To test the role of these residues, mutants of trehalase were produced. All mutants were at least four orders of magnitude less active than wild type trehalase and no structural difference between these mutants and wild type enzyme were discernible by circular dichroism. D322A and E520 pH-activity profile lacked the alkaline arm and the acid arm, respectively, suggesting that D322 is the acid and E520 the basic catalyst. Azide increases E520A activity three times, confirming its action as the basic catalyst. Taking into account the decrease in activity after substitution for alanine residue, the three arginine residues are as important as the catalytical ones to trehalase activity. This clarifies the previous misidentification of an Arg residue as the acid catalyst. As far as we know, this is the first report on the functional identification residues important for trehalase activity. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis of isosorbide aliphatic polyesters is demonstrated by the use of Novozym 435, a catalyst consisting of Candida antarctica lipase B immobilized on a macroporous support Several experimental procedures were tested and azeotropic distillation was most effective in removing low mass byproduct Furthermore, the use of diethyl ester derivatives of diacid comonomers gave isosorbide copolyesters with highest Isolated yield and molecular weights The length of the diacid aliphatic chain was less restrictive, but with a clear preference for longer aliphatic chains The molecular mass values of the obtained products were equivalent or higher than those obtained by nonenzymatic polymerizations, a clear illustration of the potential of enzymatic over conventional catalysis The ability of Novozym 435 to catalyze the synthesis of isosorbide polyester with weight-average molecular weights in excess of 40000 Da was unexpected given that isosorbide has two chemically distinct secondary hydroxyl groups This is the first example in which isosorbide polyesters were synthesized by enzyme catalysis, opening a large array of possibilities for this important class of biomass-derived building blocks Because these polymers are potential biomaterials the total absence of conventional Lewis acid catalyst residues represents a major Improvement in the toxicity of the material

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of variations in the composition for ternary catalysts of the type Pt-x(Ru-Ir)(1-x)/C on the methanol oxidation reaction in acid media for x values of 0.25, 0.50 and 0.75 is reported. The catalysts were prepared by the sol-gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) analyses. The nanometric character (2.8-3.2 nm) of the sol-gel deposits was demonstrated by XRD and TEM while EDX and AAS analyses showed that the metallic ratio in the compounds was very near to the expected one. Cyclic voltammograms for methanol oxidation revealed that the reaction onset occur at less positive potentials in all the ternary catalysts tested here when compared to a Pt-0.75-Ru-0.25/C (E-Tek) commercial composite. Steady-state polarization experiments (Tafel plots) showed that the Pt-0.25(Ru-Ir)(0.75)/C catalyst is the more active one for methanol oxidation as revealed by the shift of the reaction onset towards lower potentials. In addition, constant potential electrolyses suggest that the addition of Ru and Ir to Pt decreases the poisoning effect of the strongly adsorbed species generated during methanol oxidation. Consequently, the Pt-0.25 (Ru-Ir)(0.75)/C Composite catalyst is a very promising one for practical applications. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A carbon-supported binary Pt(3)Sn catalyst has been prepared using a modified polymeric precursor method under controlled synthesis conditions This material was characterized using X-ray diffraction (XRD). and the results indicate that 23% (of a possible 25%) of Sn is alloyed with Pt, forming a dominant Pt(3)Sn phase. Transmission election microscopy (TEM) shows good dispersion of the electrocatalyst and small particle sizes (3 6 nm +/- 1 nm) The polarization curves for a direct ethanol fuel cell using Pt(3)Sn/C as the anode demonstrated Improved performance compared to that of a PtSn/C E-TEK. especially in the intrinsic resistance-controlled and mass transfer regions. This behavior is probably associated with the Pt(3)Sn phase. The maximum power density for the Pt(3)Sn/C electrocatalyst (58 mW cm(-2)) is nearly twice that of a PtSn/C E-TEK electrocatalyst (33 mW cm(-2)) This behavior is attributed to the presence of a mixed Pt(9)Sn and Pt(3)Sn alloy phase in the commercial catalysts (C) 2009 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.