15 resultados para 340208 Macroeconomics (incl. Monetary and Fiscal Theory)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this paper, nonlinear dynamic equations of a wheeled mobile robot are described in the state-space form where the parameters are part of the state (angular velocities of the wheels). This representation, known as quasi-linear parameter varying, is useful for control designs based on nonlinear H(infinity) approaches. Two nonlinear H(infinity) controllers that guarantee induced L(2)-norm, between input (disturbances) and output signals, bounded by an attenuation level gamma, are used to control a wheeled mobile robot. These controllers are solved via linear matrix inequalities and algebraic Riccati equation. Experimental results are presented, with a comparative study among these robust control strategies and the standard computed torque, plus proportional-derivative, controller.
Resumo:
We continue the investigation of the algebraic and topological structure of the algebra of Colombeau generalized functions with the aim of building up the algebraic basis for the theory of these functions. This was started in a previous work of Aragona and Juriaans, where the algebraic and topological structure of the Colombeau generalized numbers were studied. Here, among other important things, we determine completely the minimal primes of (K) over bar and introduce several invariants of the ideals of 9(Q). The main tools we use are the algebraic results obtained by Aragona and Juriaans and the theory of differential calculus on generalized manifolds developed by Aragona and co-workers. The main achievement of the differential calculus is that all classical objects, such as distributions, become Cl-functions. Our purpose is to build an independent and intrinsic theory for Colombeau generalized functions and place them in a wider context.
Resumo:
This report is a review of Darwin`s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.
Resumo:
We extend the Jacobson's Coordinatization theorem to Jordan superalgebras. Using it we classify Jordan bimodules over superalgebras of types Q(n) and JP(n), n >= 3. Then we use the Tits-Kantor-Koecher construction and representation theory of Lie superalgebras to treat the remaining case Q(2).
Resumo:
In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.
Resumo:
A mechanism for the kinetic instabilities observed in the galvanostatic electro-oxidation of methanol is suggested and a model developed. The model is investigated using stoichiometric network analysis as well as concepts from algebraic geometry (polynomial rings and ideal theory) revealing the occurrence of a Hopf and a saddle-node bifurcation. These analytical solutions are confirmed by numerical integration of the system of differential equations. (C) 2010 American Institute of Physics
Resumo:
This paper discusses the integrated design of parallel manipulators, which exhibit varying dynamics. This characteristic affects the machine stability and performance. The design methodology consists of four main steps: (i) the system modeling using flexible multibody technique, (ii) the synthesis of reduced-order models suitable for control design, (iii) the systematic flexible model-based input signal design, and (iv) the evaluation of some possible machine designs. The novelty in this methodology is to take structural flexibilities into consideration during the input signal design; therefore, enhancing the standard design process which mainly considers rigid bodies dynamics. The potential of the proposed strategy is exploited for the design evaluation of a two degree-of-freedom high-speed parallel manipulator. The results are experimentally validated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The critical behavior of the stochastic susceptible-infected-recovered model on a square lattice is obtained by numerical simulations and finite-size scaling. The order parameter as well as the distribution in the number of recovered individuals is determined as a function of the infection rate for several values of the system size. The analysis around criticality is obtained by exploring the close relationship between the present model and standard percolation theory. The quantity UP, equal to the ratio U between the second moment and the squared first moment of the size distribution multiplied by the order parameter P, is shown to have, for a square system, a universal value 1.0167(1) that is the same for site and bond percolation, confirming further that the SIR model is also in the percolation class.
Resumo:
In this paper, we present some results on the bounded derived category of Artin algebras, and in particular on the indecomposable objects in these categories, using homological properties. Given a complex X*, we consider the set J(X*) = {i is an element of Z vertical bar H(i)(X*) not equal 0} and we define the application l(X*) = maxJ(X*) - minJ(X*) + 1. We give relationships between some homological properties of an algebra and the respective application l. On the other hand, using homological properties again, we determine two subcategories of the bounded derived category of an algebra, which turn out to be the bounded derived categories of quasi-tilted algebras. As a consequence of these results we obtain new characterizations of quasi-tilted and quasi-tilted gentle algebras.
Resumo:
We address two problems with the structure and representation theory of finite W-algebras associated with general linear Lie algebras. Finite W-algebras can be defined using either Kostant`s Whittaker modules or a quantum Hamiltonian reduction. Our first main result is a proof of the Gelfand-Kirillov conjecture for the skew fields of fractions of finite W-algebras. The second main result is a parameterization of finite families of irreducible Gelfand-Tsetlin modules using Gelfand-Tsetlin subalgebra. As a corollary, we obtain a complete classification of generic irreducible Gelfand-Tsetlin modules for finite W-algebras. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Este trabalho apresenta, a partir de histórias de vida, características do processo de "encontro transformador" entre dois moradores de rua e uma professora, que foi "ponto de apoio" positivo em suas vidas. O "encontro transformador" é interação entre os seres humanos que possibilita a transformação dos envolvidos, no sentido de despertar suas potencialidades, a retomada do sentido da vida, promovendo-lhes a resiliência, que é a capacidade humana de fazer frente às adversidades da vida, superá-las e sair delas fortalecidos e, inclusive, transformados. O estudo longitudinal realizado envolveu o resgate de histórias de vida, através de entrevistas abertas, fotografias, registros em Diário de Campo e desenhos feitos pelos sujeitos de observação. Na interpretação dos dados contemplou-se o emprego de conceitos de determinadas teorias de: Psicologia, Geografia, Sociologia, Direito, Ciências da Educação, Complexidade e Sistêmica, em diálogo entre diferentes disciplinas. A análise do fenômeno - em que o morar na rua surgiu como situação existencial excludente - revelou nova configuração nas psiques dos moradores de rua, em movimento de transformação. No fenômeno observado - complexo - desvelou-se a dificuldade dos moradores de rua estudados de se manterem no processo resiliente sem o apoio efetivo da Sociedade Civil e do Estado, a partir de políticas públicas voltadas para esse tipo de população. Conclui-se pela importância dos resultados deste trabalho como contribuição para a ampliação de processos de formação, não só de profissionais que atuam com moradores de rua como de integrantes da sociedade em geral, norteados por uma visão solidária de busca de cidadania para todos.
Resumo:
Este trabalho apresenta, a partir de histórias de vida, características do processo de "encontro transformador" entre dois moradores de rua e uma professora, que foi "ponto de apoio" positivo em suas vidas. O "encontro transformador" é interação entre os seres humanos que possibilita a transformação dos envolvidos, no sentido de despertar suas potencialidades, a retomada do sentido da vida, promovendo-lhes a resiliência, que é a capacidade humana de fazer frente às adversidades da vida, superá-las e sair delas fortalecidos e, inclusive, transformados. O estudo longitudinal realizado envolveu o resgate de histórias de vida, através de entrevistas abertas, fotografias, registros em Diário de Campo e desenhos feitos pelos sujeitos de observação. Na interpretação dos dados contemplou-se o emprego de conceitos de determinadas teorias de: Psicologia, Geografia, Sociologia, Direito, Ciências da Educação, Complexidade e Sistêmica, em diálogo entre diferentes disciplinas. A análise do fenômeno - em que o morar na rua surgiu como situação existencial excludente - revelou nova configuração nas psiques dos moradores de rua, em movimento de transformação. No fenômeno observado - complexo - desvelou-se a dificuldade dos moradores de rua estudados de se manterem no processo resiliente sem o apoio efetivo da Sociedade Civil e do Estado, a partir de políticas públicas voltadas para esse tipo de população. Conclui-se pela importância dos resultados deste trabalho como contribuição para a ampliação de processos de formação, não só de profissionais que atuam com moradores de rua como de integrantes da sociedade em geral, norteados por uma visão solidária de busca de cidadania para todos
Resumo:
Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.
Resumo:
This paper deals with the H(infinity) recursive estimation problem for general rectangular time-variant descriptor systems in discrete time. Riccati-equation based recursions for filtered and predicted estimates are developed based on a data fitting approach and game theory. In this approach, the nature determines a state sequence seeking to maximize the estimation cost, whereas the estimator tries to find an estimate that brings the estimation cost to a minimum. A solution exists for a specified gamma-level if the resulting cost is positive. In order to present some computational alternatives to the H(infinity) filters developed, they are rewritten in information form along with the respective array algorithms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We establish existence of mild solutions for a class of abstract second-order partial neutral functional differential equations with unbounded delay in a Banach space.