On the Derived Categories and Quasitilted Algebras


Autoria(s): COELHO, Flavio U.; TOSAR, Cecilia
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

In this paper, we present some results on the bounded derived category of Artin algebras, and in particular on the indecomposable objects in these categories, using homological properties. Given a complex X*, we consider the set J(X*) = {i is an element of Z vertical bar H(i)(X*) not equal 0} and we define the application l(X*) = maxJ(X*) - minJ(X*) + 1. We give relationships between some homological properties of an algebra and the respective application l. On the other hand, using homological properties again, we determine two subcategories of the bounded derived category of an algebra, which turn out to be the bounded derived categories of quasi-tilted algebras. As a consequence of these results we obtain new characterizations of quasi-tilted and quasi-tilted gentle algebras.

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq

FAPESP

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

ALGEBRAS AND REPRESENTATION THEORY, v.12, n.1, p.77-92, 2009

1386-923X

http://producao.usp.br/handle/BDPI/30601

10.1007/s10468-008-9105-6

http://dx.doi.org/10.1007/s10468-008-9105-6

Idioma(s)

eng

Publicador

SPRINGER

Relação

Algebras and Representation Theory

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #Derived category #Quasi-tilted algebra #Homological properties of modules and algebras #TILTED ALGEBRAS #RIGHT PARTS #Mathematics
Tipo

article

original article

publishedVersion