155 resultados para 3 beta-HSD
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In this work is reported the sensitization effect by polymer matrices on the photoluminescence properties of diaquatris(thenoyltrifluoroacetonate)europium(III), [Eu(tta)(3)(H(2)O)(2)], doped into poly-beta-hydroxybutyrate (PHB) with doping percentage at 1, 3, 5, 7 and 10% (mass) in film form. TGA results indicated that the Eu(3+) complex precursor was immobilized in the polymer matrix by the interaction between the Eu(3+) complex and the oxygen atoms of the PHB polymer when the rare earth complex was incorporated in the polymeric host. The thermal behaviour of these luminescent systems is similar to that of the undoped polymer, however, the T(onset) temperature of decomposition decreases with increase of the complex doping concentration. The emission spectra of the Eu(3+) complex doped PHB films recorded at 298 K exhibited the five characteristic bands arising from the (5)D(0) -> (7)F(J) intraconfigurational transitions (J = 0-4). The fact that the quantum efficiencies eta of the doped film increased significantly revealed that the polymer matrix acts as an efficient co-sensitizer for Eu(3+) luminescent centres and therefore enhances the quantum efficiency of the emitter (5)D(0) level. The luminescence intensity decreases, however, with increasing precursor concentration in the doped polymer to greater than 5% where a saturation effect is observed at this specific doping percentage, indicating that changes in the polymeric matrix improve the absorption property of the film, consequently quenching the luminescent effect.
Resumo:
Pimarane-type diterpenes were described to exert antispasmodic and relaxant activities. Based on this observation we hypothesized that the diterpene ent-8(14),15-pimaradien-3 beta-ol (PA-3 beta-ol) induced vascular relaxation. With this purpose, the present work investigates the mechanisms involved in the vasorelaxant effect of the pimarane-type diterpene PA-3 beta-ol. Vascular reactivity experiments, using standard muscle bath procedures, were performed in isolated aortic rings from male Wistar rats. Cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3AM. PA-3 beta-ol (10, 50 and 100 mu mol/l) inhibited phenylephrine and KCl-induced contraction in either endothelium-intact or denuded rat aortic rings. PA-3 beta-ol also reduced CaCl(2)-induced contraction in Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). PA-3 beta-ol (1-300 mu mol/l) concentration dependently relaxed phenylephrine-pre-contracted rings with intact or denuded endothelium. The diterpene also relaxed KCl-pre-contracted rings with intact or denuded endothelium. Moreover, Ca(2+) mobilization study showed that PA-3 beta-ol (100 mu mol/l) and verapamil (1 mu mol/l) inhibited the increase in Ca(2+)-concentration in smooth muscle and endothelial cells induced by phenylephrine (10 mu mol/l) or KCl (60 mmol/l). Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l) and 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the PA-3 beta-ol concentration-response curves. On the other hand, 7-nitroindazole (100 mu mol/l), 1400 W (1 mu mol/l), indomethacin (10 mu mol/l) and tetraethylammonium (1 mmol/l) did not affect PA-3 beta-ol-induced relaxation. Collectively, our results provide evidence that the effects elicited by PA-3 beta-ol involve extracellular Ca(2+) influx blockade. Its effects are also partly mediated by the activation of NO-cGMP pathway. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work reports on the synthesis and characterization of the ligand 3-hexadecylpentane-2,4-drone (Hhdacac) and its Eu(3+) complexes Eu(hdacac)(6) center dot 2H(2)O, Eu(hdacac)(6) center dot phen and Eu(hdacac)(6) center dot tta, where phen and tta denote 1,10-phenanthroline and thenoyltrifluoroacetone, respectively. These new compounds present long carbon chains and their expected miscibility into non-polar ambients is confirmed by the emission spectra of Eu(hdacac)6 center dot tta in hexane. Moreover, the amphiphilic properties of Eu(hdacac)6 complexes allow the obtainment of thin luminescent films by the Langmuir-Blodgett technique. In both cases (solids and films), the typical antenna effect of beta-diketonates is observed. The alluring characteristics of these compounds raise great interest in many fields of Materials Science, like photo- and electro-luminescent materials (mainly thin ""organic"" films), metal catalysts or probes in non-polar solutions, and Langmuir-Blodgett films of several compositions. For the characterization of these products, nuclear magnetic resonance spectroscopy ((1)H NMR), thermogravimetric analysis, elementary analyses (C, H), scanning electron microscopy (energy dispersive X-ray spectroscopy), absorption (UV-vis/FT-IR) and photoluminescence spectroscopies were used. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Galectin-3 has been implicated in tumor progression of some malignancies as thyroid, prostate, and salivary gland tumors. Recently, it has been suggested that this protein may be an important mediator of the beta-catenin/Wnt pathway. Moreover, nuclear galectin-3 expression has been implicated in cell proliferation, promoting cyclin D1 activation. Thus, the present study aimed to correlate galectin-3 expression with beta-catenin and cyclin D1 expressions in adenoid cystic carcinoma (ACC) and in polymorphous low-grade adenocarcinoma (PLGA). Methods: Fifteen formalin-fixed paraffin-embedded cases of each tumor were retrieved from the files of the Surgical Oral Pathology Service at the University of Sao Paulo and the proteins were analyzed by immunohistochemistry. Results: Adenoid cystic carcinoma showed galectin-3 immunostaining mainly in the nuclei, while PLGA revealed a positive mostly cytoplasmic reaction to galectin-3 in the largest part of tumor cells. Both tumors showed intense cytoplasmic/nuclear staining for beta-catenin in majority of cases. Cyclin D1 immunoreactivity was not detected in 14/15 PLGA and showed specific nuclear staining in 10/15 cases of ACC in more than 5% of the neoplastic cells. Cyclin D1 expression was correlated with cytoplasmic and nuclear galectin-3 expression in ACC (P < 0.05). Conclusions: These results suggest that in ACC galectin-3 may play a role in cellular proliferation through cyclin D1 activation. In addition, nuclear expression of galectin-3 in ACC may be related to a more aggressive behavior of this lesion. Although beta-catenin seems to play a role in carcinogenesis in both lesions, it seems that it does not bind to galectin-3 for cyclin D1 stimulation.
Resumo:
Long-term adaptation to resistance training is probably due to the cumulative molecular effects of each exercise session. Therefore, we studied in female Wistar rats the molecular effects of a chronic resistance training regimen (3 months) leading to skeletal muscle hypertrophy in the plantaris muscle. Our results demonstrated that muscle proteolytic genes MuRF-1 and Atrogin-1 were significantly decreased in the exercised group measured 24 h after the last resistance exercise session (41.64 and 61.19%, respectively; P < 0.05). Nonetheless, when measured at the same time point, 4EBP-1, GSK-3 beta and eIF2B epsilon mRNA levels and Akt, GSK-3 beta and p70S6K protein levels (regulators of translation initiation) were not modified. Such data suggests that if gene transcription constitutes a control point in the protein synthesis pathway this regulation probably occurs in early adaptation periods or during extreme situations leading to skeletal muscle remodeling. However, proteolytic gene expression is modified even after a prolonged resistance training regimen leading to moderate skeletal muscle hypertrophy.
Resumo:
Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT(1)R) is critically required to the development of T(3)-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT(1)R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT(1)R blocker (Losartan, 1 mu M) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T(3) (10 nM) treatment. The cardiomyocytes transfected with the AT(1)R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT(1)R. The AT(1)R silencing and the AT(1)R blockade totally prevented the T(3)-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T(3) demonstrated a rapid activation of Akt/GSK-3 beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 mu M and Wortmannin, 200 nM). In addition, we demonstrated that the AT(1)R mediated the T(3)-induced activation of Akt/GSK-3 beta/mTOR signaling pathway, since the AT(1)R silencing and the AT(1)R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT(1)R expression (180%, P < 0.05) were rapidly increased by T(3) treatment. These data demonstrate for the first time that the AT(1)R is a critical mediator to the T(3)-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3 beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T(3)-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT(1)R-Akt/GSK-3 beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T(3) in cardiomyocytes.
Resumo:
We hypothesize that, in kidney of diabetic rats, hepatocyte nuclear factors (HNF-1 alpha. and HNF-3 beta) play a critical role in the overexpression of solute carrier 2A2 (SLC2A2) gene. Diabetic rats submitted or not to rapid (up to 12 h) and short-term (1, 4 and 6 days) insulin treatment were investigated. Twofold increase in GLUT2 mRNA was observed in diabetic, accompanied by significant increases in HNF-1 alpha and HNF-3 beta expression and binding activity. Additional 2-fold increase in GLUT2 mRNA and HNF-3 beta expression/activity was observed in 12-h insulin-treated rats. Six-day insulin treatment decreased GLUT2 mRNA and HNF-1 alpha expression and activity to levels of non-diabetic rats, whereas HNF-3 beta decreased to levels of non-insulin-treated diabetic rats. Our results provide evidence for a link between the overexpression of SLC2A2 gene and the transcriptional activity of HNF-1 alpha and HNF-3 beta in kidney of diabetic rats. Furthermore, recovery of SLC2A2 gene after 6-day insulin treatment also involves HNF-1 alpha and HNF-3 beta activity. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Nicotinic acetylcholine receptors (nAChRs) were studied in detail in the past regarding their interaction with therapeutic and drug addiction related compounds. Using fast kinetic whole-cell recording, we have now studied effects of tacrine, an agent used clinically to treat Alzheimer`s disease, on currents elicited by activation of rat alpha(3)beta(4) nAChR heterologously expressed in KX alpha(3)beta(4)R2 cells. Characterization of receptor activation by nicotine used as agonist revealed a K(d) of 23 +/- 0.2 mu M and 4.3 +/- 1.3 for the channel opening equilibrium constant, Phi(-1). Experiments were performed to investigate whether tacrine is able to activate the alpha(3)beta(4) nAChR. Tacrine did not activate whole-cell currents in KX alpha(3)beta(4)R2 cells but inhibited receptor activity at submicromolar concentration. Dose response curves obtained with increasing agonist or inhibitor concentration revealed competitive inhibition of nAChRs by tacrine, with an apparent inhibition constant, K(I), of 0.8 mu M. The increase of Phi(-1) in the presence of tacrine suggests that the drug stabilizes a nonconducting open channel form of the receptor. Binding studies with TCP and MK-801 ruled out tacrine binding to common allosteric sites of the receptor. Our study suggests a novel mechanism for action of tacrine on nAChRs besides inhibition of acetylcholine esterase.
Resumo:
1,3-beta-Glucan depolymerizing enzymes have considerable biotechnological applications including biofuel production, feedstock-chemicals and pharmaceuticals. Here we describe a comprehensive functional characterization and low-resolution structure of a hyperthermophilic laminarinase from Thermotoga petrophila (TpLam). We determine TpLam enzymatic mode of operation, which specifically cleaves internal beta-1,3-glucosidic bonds. The enzyme most frequently attacks the bond between the 3rd and 4th residue from the non-reducing end, producing glucose, laminaribiose and laminaritriose as major products. Far-UV circular dichroism demonstrates that TpLam is formed mainly by beta structural elements, and the secondary structure is maintained after incubation at 90 degrees C. The structure resolved by small angle X-ray scattering, reveals a multi-domain structural architecture of a V-shape envelope with a catalytic domain flanked by two carbohydrate-binding modules. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
It is reported in this work the preparation, characterisation and photoluminescence study of poly(methylmethacrylate) (PMMA) thin films co-doped with [Eu(tta)(3)(H(2)O)(2)] and [Tb(acac)(3)(H(2)O)(3)] complexes. Both the composition and excitation wavelength may be tailored to fine-tune the emission properties of these Ln(3+)-beta-diketonate doped polymer films, exhibiting green and red primary colours, as well as intermediate colours. In addition to the ligand-Ln(3+) intramolecular energy transfer, it is observed an unprecedented intermolecular energy transfer process from the (5)D(4) emitting level of the Tb(3+) ion to the excited triplet state T(1) of the tta ligand coordinated to the Eu(3+) ion. The PMMA polymer matrix acts as a co-sensitizer and enhances the overall luminescence intensity of the polymer films. Furthermore, it provides considerable UV protection for the luminescent species and improves the photostability of the doped system.
Resumo:
Plasmodium vivax Merozoite Surface Protein-3 alpha and 3 beta are members of a family of related merozoite surface proteins that contain a central alanine-rich domain with heptad repeats that is predicted to form alpha-helical secondary and coiled-coil tertiary structures. Seven recombinant proteins representing different regions of MSP-3 alpha and MSP-3 beta of P. vivax were generated to investigate their structure. Circular dichroism spectra analysis revealed that some proteins are folded with a high degree of alpha-helices as secondary structure, whereas other products contain a high content of random coil. Using size exclusion chromatography, we found that the two smaller fragments of the MSP-3 alpha, named CC4 and CC5, predicted to form coiled-coil (CC) structures, eluted at volumes corresponding to molecular weights larger than their monomeric masses. This result suggests that both proteins are oligomeric molecules. Analytical ultracentrifugation experiments showed that the CC5 oligomers are elongated molecules. Together, these data may help to understand important aspects of P. vivax biology. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Seven pimarane type-diterpenes re-isolated from Viguiera arenaria Baker and two semi-synthetic pimarane derivatives were evaluated in vitro against the following main microorganisms responsible for dental caries: Streptococcus salivarius, S. sobrinus, S. mutans, S. mitis, S. sanguinis and Lactobacillus casei. The compounds ent-pimara-8(14), 15-dien-19-oic acid (PA); ent-8(14), 15-pimaradien-3 beta-ol; ent-15-pimarene-8 beta, 19-diol; ent-8(14), 15-pimaradien-3 beta-acetoxy and the sodium salt derivative of PA were the most active compounds, displaying MIC values ranging from 2 to 8 mu g.mL(-1). Thus, this class of compounds seems promising as a class of new effective anticariogenic agents. Furthermore, our results also allow us to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to the discovery of new natural compounds that could be employed in the development of oral care products.
Resumo:
Six pimarane-type diterpenes isolated from Viguiera arenaria Baker and two semi-synthetic derivatives were evaluated in vitro against a panel of representative microorganisms responsible for dental root canal infections. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Porphyromonas gingivalis, Prevotella nigrescens, Prevotella intermedia, Prevotella buccae, Fusobacterium nucleatum, Bacteroides fragilis, Actinomyces naeslundii, Actinomyces viscosus, Peptostreptococcus micros, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans. The compounds ent-pimara-8(14), 15-dien-19-oic acid, its sodium salt and ent-8(14), 15-pimaradien-3 beta-ol were the most active, displaying MIC values ranging from 1 to 10 mu g mL(-1). The results also allow us to conclude that minor structural differences among these diterpenes significantly influence their antimicrobial activity, bringing new perspectives to the discovery of new chemicals for use as a complement to instrumental endodontic procedures.
Resumo:
The title compound [systematic name: 3 beta-lup-20(29)-en-3-ol], C(30)H(50)O, was isolated from the leaves of Garcinia brasiliensis (common name: bacupari; a member of the Guttiferae family) and has been shown to have many useful medicinal and biological properties. The lupeol molecule consists of four six-membered rings (adopting chair conformations) and one five-membered ring (with an envelope conformation), all fused in trans fashion. Lupeol is isomorphic with the pentacyclic triterpene 3 beta,30-dihydroxylup-20(29)-ene, which differs from lupeol due to the presence of an additional hydroxy group. The crystal packing is stabilized by van der Waals interactions and intermolecular O-H center dot center dot center dot O hydrogen bonds, giving rise to an infinite helical chain along the c axis.
Resumo:
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.