142 resultados para PHYSICS, FLUIDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We report the validation of a method for the determination of acetaldehyde, acetone, methanol, and ethanol in biological fluids using manual headspace sample introduction and an acetonitrile internal standard. Method: This method uses a capillary column (I = 30 m, I.D. = 0.25 mm, dF = 0.25 mu m) installed in a gas chromatography-flame ionization detector (GC-FID) apparatus with a run time of 7.5 minutes. Results: Analysis of the retention times and the resolution of the analyte peaks demonstrated excellent separation without widening of the peaks. Precision and accuracy were good (interassay precision < 15% and recovery between 85% and 115%) in both blood and urine. Conclusion: The method was linear (r > 0.09) over the analytical measurement range (AMR) of each analyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thirteen goat herds and seven sheep flocks in the state of Rio de Janeiro, Brazil were screened for leptospirosis. From the three herds and three flocks with greatest seroreactivity, 19 goats (16 females and three bucks) and 40 sheep (26 ewes and 14 rams) that were seropositive (specific anti-Leptospira titres >= 400, based on a microscopic agglutination test), were selected for more detailed studies. From those animals, samples of vaginal fluids or semen were collected for bacteriological and molecular assays. For both species of animals, the most prevalent reactions were to serovars Hardjo, Shermani, and Grippotyphosa. Although leptospires were detected by darkfield microscopy in three vaginal fluid samples (from two goats and one ewe), pure isolates were not obtained by bacteriological culture of vaginal fluids or semen. However, seven vaginal fluid samples (from four goats and three ewes) and six semen samples (all from rams) were positive on polymerase chain reaction (PCR). Based on these findings, in addition to analogous findings in cattle, we inferred that there is potential for venereal transmission of leptospirosis in small ruminants. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. Objective: To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. Materials and methods: Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay (R) 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay (R) 60 kVp, Nomad (R) 60 kVp and Rextar (R) 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. Results: Statistical analysis showed good quality imaging for all system, with the combination of Nomad (R) and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p < 0.05). For patient safety, the exposure rate was determined and exit dose rates for MinRay (R) at 60 kVp, MinRay (R) at 70 kVp, AnyRay (R), Nomad (R) and Rextar (R) were 3.4 mGy/s, 4.5 mGy/s, 13.5 mGy/s, 3.8 mGy/s and 2.6 mGy/s respectively. The kVp of the AnyRay (R) system was the most stable, with a ripple of 3.7%. Short-term variations in the tube output of all the devices were less than 10%. AnyRay (R) presented higher estimated effective dose than other machines. Occupational dosimetry showed doses at the operator`s hand being lowest with protective shielding (Nomad (R): 0.1 mu Gy). It was also low while using remote control (distance > 1 m: Rextar (R) < 0.2 mu Gy, MinRay (R) < 0.1 mu Gy). Conclusions: The present study demonstrated the feasibility of three portable X-ray systems to be used for specific indications, based on acceptable image quality and sufficient accuracy of the machines and following the standard guidelines for radiation hygiene. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of the mass of a black hole embedded in a universe filled with dark energy and cold dark matter is calculated in a closed form within a test fluid model in a Schwarzschild metric, taking into account the cosmological evolution of both fluids. The result describes exactly how accretion asymptotically switches from the matter-dominated to the Lambda-dominated regime. For early epochs, the black hole mass increases due to dark matter accretion, and on later epochs the increase in mass stops as dark energy accretion takes over. Thus, the unphysical behaviour of previous analyses is improved in this simple exact model. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the evolution of a primordial black hole (PBH) taking into account the presence of dark energy modeled by a general perfect fluid. In the specific case of a stationary non-self-gravitating test fluid, the competition between radiation accretion, Hawking evaporation and the accretion of such a fluid has been studied in detail. The evaporation of PBHs is quite modified at late times by these effects. We address further generalizations of this scenario to consider other types of fluids, and point out early developments of a nonstationary accretion model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermodynamic properties of dark energy fluids described by an equation of state parameter omega = p/rho are rediscussed in the context of FRW type geometries. Contrarily to previous claims, it is argued here that the phantom regime omega < -1 is not physically possible since that both the temperature and the entropy of every physical fluids must be always positive definite. This means that one cannot appeal to negative temperature in order to save the phantom dark energy hypothesis as has been recently done in the literature. Such a result remains true as long as the chemical potential is zero. However, if the phantom fluid is endowed with a non-null chemical potential, the phantom field hypothesis becomes thermodynamically consistent, that is, there are macroscopic equilibrium states with T > 0 and S > 0 in the course of the Universe expansion. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the laminar fluid flow of Newtonian and non-Newtonian of aqueous solutions in a tubular membrane is numerically studied. The mathematical formulation, with associated initial and boundary conditions for cylindrical coordinates, comprises the mass conservation, momentum conservation and mass transfer equations. These equations are discretized by using the finite-difference technique on a staggered grid system. Comparisons of the three upwinding schemes for discretization of the non-linear (convective) terms are presented. The effects of several physical parameters on the concentration profile are investigated. The numerical results compare favorably with experimental data and the analytical solutions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development of an implicit finite difference method for solving transient three-dimensional incompressible free surface flows. To reduce the CPU time of explicit low-Reynolds number calculations, we have combined a projection method with an implicit technique for treating the pressure on the free surface. The projection method is employed to uncouple the velocity and the pressure fields, allowing each variable to be solved separately. We employ the normal stress condition on the free surface to derive an implicit technique for calculating the pressure at the free surface. Numerical results demonstrate that this modification is essential for the construction of methods that are more stable than those provided by discretizing the free surface explicitly. In addition, we show that the proposed method can be applied to viscoelastic fluids. Numerical results include the simulation of jet buckling and extrudate swell for Reynolds numbers in the range [0.01, 0.5]. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a finite difference technique for simulating three-dimensional free surface flows governed by the Upper-Convected Maxwell (UCM) constitutive equation. A Marker-and-Cell approach is employed to represent the fluid free surface and formulations for calculating the non-Newtonian stress tensor on solid boundaries are developed. The complete free surface stress conditions are employed. The momentum equation is solved by an implicit technique while the UCM constitutive equation is integrated by the explicit Euler method. The resulting equations are solved by the finite difference method on a 3D-staggered grid. By using an exact solution for fully developed flow inside a pipe, validation and convergence results are provided. Numerical results include the simulation of the transient extrudate swell and the comparison between jet buckling of UCM and Newtonian fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two stochastic epidemic lattice models, the susceptible-infected-recovered and the susceptible-exposed-infected models, are studied on a Cayley tree of coordination number k. The spreading of the disease in the former is found to occur when the infection probability b is larger than b(c) = k/2(k - 1). In the latter, which is equivalent to a dynamic site percolation model, the spreading occurs when the infection probability p is greater than p(c) = 1/(k - 1). We set up and solve the time evolution equations for both models and determine the final and time-dependent properties, including the epidemic curve. We show that the two models are closely related by revealing that their relevant properties are exactly mapped into each other when p = b/[k - (k - 1) b]. These include the cluster size distribution and the density of individuals of each type, quantities that have been determined in closed forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a stochastic process describing the onset of spreading dynamics of an epidemic in a population composed of individuals of three classes: susceptible (S), infected (I), and recovered (R). The stochastic process is defined by local rules and involves the following cyclic process: S -> I -> R -> S (SIRS). The open process S -> I -> R (SIR) is studied as a particular case of the SIRS process. The epidemic process is analyzed at different levels of description: by a stochastic lattice gas model and by a birth and death process. By means of Monte Carlo simulations and dynamical mean-field approximations we show that the SIRS stochastic lattice gas model exhibit a line of critical points separating the two phases: an absorbing phase where the lattice is completely full of S individuals and an active phase where S, I and R individuals coexist, which may or may not present population cycles. The critical line, that corresponds to the onset of epidemic spreading, is shown to belong in the directed percolation universality class. By considering the birth and death process we analyze the role of noise in stabilizing the oscillations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the canonical and microcanonical Monte Carlo algorithms for different systems that can be described by spin models. Sites of the lattice, chosen at random, interchange their spin values, provided they are different. The canonical ensemble is generated by performing exchanges according to the Metropolis prescription whereas in the microcanonical ensemble, exchanges are performed as long as the total energy remains constant. A systematic finite size analysis of intensive quantities and a comparison with results obtained from distinct ensembles are performed and the quality of results reveal that the present approach may be an useful tool for the study of phase transitions, specially first-order transitions. (C) 2009 Elsevier B.V. All rights reserved.