223 resultados para applied physics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work characterizes the analog performance of SOI n-MuGFETs with HfSiO gate dielectric and TiN metal gate with respect to the influence of the high-k post-nitridation. TiN thickness and device rotation. A thinner TiN metal gate is found favorable for improved analog characteristics showing an increase in intrinsic voltage gain. The devices where the high-k material is subjected to a nitridation step indicated a degradation of the Early voltage (V(EA)) values which resulted in a lower voltage gain. The 45 degrees rotated devices have a smaller V(EA) than the standard ones when a HfSiO dielectric is used. However, the higher transconductance of these devices, due to the increased mobility in the (1 0 0) sidewall orientation, compensates this V(EA) degradation of the voltage gain, keeping it nearly equal to the voltage gain values of the standard devices. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The multiple-gate field-effect transistor (MuGFET) is a device with a gate folded on different sides of the channel region. They are one of the most promising technological solutions to create high-performance ultra-scaled SOI CMOS. In this work, the behavior of the threshold voltage in double-gate, triple-gate and quadruple-gate SOI transistors with different channel doping concentrations is studied through three-dimensional numerical simulation. The results indicated that for double-gate transistors, one or two threshold voltages can be observed, depending on the channel doping concentration. However, in triple-gate and quadruple-gate it is possible to observe up to four threshold voltages due to the corner effect and the different doping concentration between the top and bottom of the Fin. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work shows a comparison between the analog performance of standard and strained Si n-type triple-gate FinFETs with high-K dielectrics and TiN gate material. Different channel lengths and fin widths are studied. It is demonstrated that both standard and strained FinFETs with short channel length and narrow fins have similar analog properties, whereas the increase of the channel length degrades the early voltage of the strained devices, consequently decreasing the device intrinsic voltage gain with respect to standard ones. Narrow strained FinFETs with long channel show a degradation of the Early voltage if compared to standard ones suggesting that strained devices are more subjected to the channel length modulation effect. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The temperature influence on the gate-induced floating body effect (GIFBE) in fully depleted (FD) silicon-on-insulator (SOI) nMOSFETs is investigated, based on experimental results and two-dimensional numerical simulations. The GIFBE behavior will be evaluated taking into account the impact of carrier recombination and of the effective electric field mobility degradation on the second peak in the transconductance (gm). This floating body effect is also analyzed as a function of temperature. It is shown that the variation of the studied parameters with temperature results in a ""C"" shape of the threshold voltage corresponding with the second peak in the gm curve. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon carbide thin films (Si(x)C(y)) were deposited in a RF (13.56 MHz) magnetron sputtering system using a sintered SiC target (99.5% purity). In situ doping was achieved by introducing nitrogen into the electric discharge during the growth process of the films. The N(2)/Ar flow ratio was adjusted by varying the N(2) flow rate and maintaining constant the Ar flow rate. The structure, composition and bonds formed in the nitrogen-doped Si (x) C (y) thin films were investigated by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Raman spectroscopy and Fourier transform infrared spectrometry (FTIR) techniques. RBS results indicate that the carbon content in the film decreases as the N(2)/Ar flow ratio increases. Raman spectra clearly reveal that the deposited nitrogen-doped SiC films are amorphous and exhibited C-C bonds corresponding to D and G bands. After thermal annealing, the films present structural modifications that were identified by XRD, Raman and FTIR analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigates the harmonic distortion (HD) in 2-MOS balanced structures composed of triple gate FinFETs. HD has been evaluated through the determination of the third-order harmonic distortion (HD3), since this represents the major non-linearity source in balanced structures. The 2-MOS structures with devices of different channel lengths (L) and fin widths (W(fin)) have been studied operating in the linear region as tunable resistors. The analysis was performed as a function of the gate voltage, aiming to verify the correlation between operation bias and HD3. The physical origins of the non-linearities have been investigated and are pointed out. Being a resistive circuit, the 2-MOS structure is generally projected for a targeted on-resistance, which has also been evaluated in terms of HD3. The impact of the application of biaxial strain has been studied for FinFETs of different dimensions. It has been noted that HD3 reduces with the increase of the gate bias for all the devices and this reduction is more pronounced both in narrower and in longer devices. Also, the presence of strain slightly diminishes the non-linearity at a similar bias. However, a drawback associated with the use of strain engineering consists in a significant reduction of the on-resistance with respect to unstrained devices. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work focuses on the impact of the source and drain Selective Epitaxial Growth (SEG) on the performance of uniaxially strained MuGFETs. With the channel length reduction, the normalized transconductance (gm.L./W) of unstressed MuGFETs decreases due to the series resistance and short channel effects (SCE), while the presence of uniaxial strain improves the gm. The competition between the series resistance (R(s)) and the uniaxial strain results in a normalized gm maximum point for a specific channel length. Since the SEG structure influences both R(s) and the strain in the channel, this work studies from room down to low temperature how these effects influence the performance of the triple-gate FETs. For lower temperatures, the strain-induced mobility enhancement increases and leads to a shift in the maximum point towards shorter channel lengths for devices without SEG. This shift is not observed for devices with SEG where the strain level is much lower. At 150 K the gm behavior of short channel strained devices with SEG is similar to the non SEC ones due to the better gm temperature enhancement for devices without SEG caused by the strain. For lower temperatures SEG structure is not useful anymore. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleation of silver nanoparticles (NPs) in Tm(3+) doped PbO-GeO(2) (PGO) glass is reported. The influence of the heat treatment on the nucleation of silver NPs is studied by means of transmission electron microscopy and optical spectroscopy. Two heat treatment procedures were applied in order to compare their performance. Observation of infrared-to-visible frequency upconversion (UC) luminescence of Tm(3+) ions is reported and correlated with the heat-treatment procedure. Enhancement of the UC emission for samples heat treated during various time intervals is attributed to the increased local field in the vicinity of the NPs. Quenching of the UC signal was also observed and correlated with the growth of NPs amount and size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron beam induced second harmonic generation (SHG) is studied in Er(3+) doped PbO-GeO(2) glasses containing silver nanoparticles with concentrations that are controlled by the heat-treatment of the samples. The SHG is observed at T = 4.2 K using a p-polarized laser beam at 1064 nm. Enhancement of the SHG is observed in the samples that are submitted to electron beam incidence. The highest value of the nonlinear susceptibility, 2.08 pm/V, is achieved for the sample heat-treated during 72 h and submitted to an electron beam current of 15 nA. The samples that were not exposed to the electron beam present a susceptibility of a parts per thousand 0.5 pm/V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work the performance of graded-channel (CC) SOI MOSFETs operating as source-follower buffers is presented. The experimental analysis is performed by comparing the gain and linearity of buffers implemented with CC and standard SOI MOS devices considering the same mask dimensions. It is shown that by using CC devices, buffer gain very close to the theoretical limit can be achieved, with improved linearity, while for standard devices the gain departs from the theoretical value depending on the inversion level imposed by the bias current and input voltage. Two-dimensional numerical simulations were performed in order to confirm some hypotheses proposed to explain the gain behavior observed in the experimental data. By using numerical simulations the channel length has been varied, showing that the gain of buffers implemented with CC devices remains close to the theoretical limit even when short-channel devices are adopted. It has also been shown that the length of a source-follower buffer using CC devices can be reduced by a factor of 5, in comparison with a standard Sol MOSFET, without gain loss or linearity degradation. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we studied the mixture of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS), a commercial polymer, with monobasic potassium phosphate (KDP), a piezoelectric salt, as a possible novel material in the fabrication of a low cost, easy-to-make,flexible pressure sensing device. The mixture between KDP and PEDOT: PSS was painted in a flexible polyester substrate and dried. Afterwards, I x V curves were carried out. The samples containing KDP presented higher values of current in smaller voltages than the PEDOT: PSS without KDP. This can mean a change in the chain arrays. Other results showed that the material responds to directly applied pressure to the sample that can be useful to sensors fabrication. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A variety of nanostructures are being investigated as functional drug carriers for treatment of a wide range of diseases, most notably cardiovascular defects, autoimmune diseases, and cancer. The aim of this present contribution is to evaluate potentially applicable nanomaterials in the diagnosis and treatment of cancer due to their photophysical and photobiological properties and complexation behavior. The delivery systems consisted of chloro-aluminum phthalocyanine associated with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. The preparation of the complex and its stoichiometry in an ethanol/buffer (3:1) solution were studied by spectroscopic techniques, which were defined as 1:2. The inclusion complex in the nanometer scale was observed on the basis of changes to the spectroscopic properties. The singlet oxygen production and complex photophysical parameters were determined by measuring luminescence at 1270 nm and by steady state and time resolved spectroscopic, respectively. The preparation of the complex was tested and analyzed with regard to cellular damage by visible light activation. The inclusion complex showed a higher singlet oxygen quantum yield compared with other systems and other photoactive dyes. There was also a reduction in the fluorescence quantum yield compared with the results obtained for zinc phthalocyanine in organic medium. The results reported clearly that the inclusion complex chloro-aluminum phthalocyanine/cyclodextrin showed some changes in its spectroscopy properties leading to better biodistribution and biocompatibility with a potential application in photodynamic therapy, especially in the case of neoplasy. Additionally, it also has non-oncological applications as a drug delivery system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study the interaction between magnetic nanoparticles (MNPs) surface-coated with meso-2,3-dimercaptosuccinic acid (DMSA) with both bovine serum albumin (BSA) and human serum albumin (HSA) was investigated. The binding of the MNP-DMSA was probed by the fluorescence quenching of the BSA and HSA tryptophan residue. Magnetic resonance and light microscopy analyses were carried out in in vivo tests using female Swiss mice. The binding constants (K(b)) and the complex stoichiometries (n) indicate that MNP-DMSA/BSA and MNP-DMSA/HSA complexes have low association profiles. After five minutes following intravenous injection of MNP-DMSA into mice`s blood stream we found the lung firstly target by the MNP-DMSA, followed by the liver in a latter stage. This finding suggests that the nanoparticle`s DMSA-coating process probably hides the thiol group, through which albumin usually binds. This indicates that biocompatible MNP-DMSA is a very promising material system to be used as a drug delivery system (DDS), primarily for lung cancer treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study a magnetic nanoemulsion (MNE) was developed from a mixture of two components, namely biodegradable surfactants and biocompatible citrate-coated cobalt ferrite-based magnetic fluid, for entrapment of Zn(II)-Phthalocyanine (ZnPc), the latter a classical photosensitizer (PS) species used in photodynamic therapy (PDT) procedures. The sample`s stability was evaluated as a function of time using photocorrelation spectroscopy (PCS) for determination of the average hydrodynamic diameter, diameter dispersion and zeta potential. The ZnPc-loaded magneto nanoemulstion (ZnPc/MNE) formulation was evaluated in vitro assays to access the phototoxicity and the effect of application of AC magnetic fields (magnetohyperthermia damage) after incubation with J774-A1 macrophages cells. Darkness toxicity, phototoxicity and AC magnetic field exposures revealed an enhancement response for combined photodynamic and magnetohyperthermia (MHT) processes, indicating the presence of the synergic effect.