128 resultados para Polymerization, Metallocene, Tandem, Fiber, Heterogeneous
Resumo:
The aim of this study was to assess the relation between the number of free radicals generated and the polymerization depth in two different commercial brands of resin composites with different colors and translucence. Electron paramagnetic resonance quantified the radical populations through relative intensity (I (r)) of free radicals generated, and radical decay was monitored. Sample translucence and the classical polymerization depth were measured. The analysis indicated that resin with more color pigments (MA4, I (r) = 0.73 a.u) or more opacity components (ODA2, I (r) = 0.84 a.u) generated smaller populations of free radicals and have the lower polymerization depth than clearer (M, I (r) = 1.20 a.u and MA2, I (r) = 1.02) or more translucent (OEA2, I (r) = 1.00 a.u) composites for the same light-curing time. It seems that irradiation doses have to be adequate to more colored and less translucent resins.
Resumo:
The purpose of this study was to evaluate the influence of different light sources and photo-activation methods on degree of conversion (DC%) and polymerization shrinkage (PS) of a nanocomposite resin (Filtek (TM) Supreme XT, 3M/ESPE). Two light-curing units (LCUs), one halogen-lamp (QTH) and one light-emitting-diode (LED), and two different photo-activation methods (continuous and gradual) were investigated in this study. The specimens were divided in four groups: group 1-power density (PD) of 570 mW/cm(2) for 20 s (QTH); group 2-PD 0 at 570 mW/cm(2) for 10 s + 10 s at 570 mW/cm(2) (QTH); group 3-PD 860 mW/cm(2) for 20 s (LED), and group 4-PD 125 mW/cm(2) for 10 s + 10 s at 860 mW/cm(2) (LED). A testing machine EMIC with rectangular steel bases (6 x 1 x 2 mm) was used to record the polymerization shrinkage forces (MPa) for a period that started with the photo-activation and ended after two minutes of measurement. For each group, ten repetitions (n = 40) were performed. For DC% measurements, five specimens (n = 20) for each group were made in a metallic mold (2 mm thickness and 4 mm diameter, ISO 4049) and them pulverized, pressed with bromide potassium (KBr) and analyzed with FT-IR spectroscopy. The data of PS were analyzed by Analysis of Variance (ANOVA) with Welch`s correction and Tamhane`s test. The PS means (MPa) were: 0.60 (G1); 0.47 (G2); 0.52 (G3) and 0.45 (G4), showing significant differences between two photo-activation methods, regardless of the light source used. The continuous method provided the highest values for PS. The data of DC% were analyzed by Analysis of Variance (ANOVA) and shows significant differences for QTH LCUs, regardless of the photo-activation method used. The QTH provided the lowest values for DC%. The gradual method provides lower polymerization contraction, either with halogen lamp or LED. Degree of conversion (%) for continuous or gradual photo-activation method was influenced by the LCUs. Thus, the presented results suggest that gradual method photo-activation with LED LCU would suffice to ensure adequate degree of conversion and minimum polymerization shrinkage.
Resumo:
Two-photon polymerization is a powerful tool for fabricating three-dimensional micro/nano structures for applications ranging from nanophotonics to biology. To tailor such structure for specific purposes it is often important to dope them. In this paper we report on the fabrication of structures, with nanometric surface features (resolution of approximately 700 nm), using two-photon polymerization of an acrylic resin doped with the biocompatible polymer chitosan using a guest-host scheme. The fluorescence background in the Raman spectrum indicates the presence of chitosan throughout the structure. Mechanical characterization reveals that chitosan does not affect the mechanical properties of the host acrylic resin and, consequently, the structures exhibit excellent integrity. The approach presented in this work can be used in the fabrication of micro- and nanostructures containing biopolymers for biomedical applications.
Resumo:
Dental composite resins possess good esthetic properties, and are currently among the most popular dental restorative materials. Both organic and inorganic phases might influence the material behavior, the filler particle features and rate are the most important factors related to improvement of the mechanical properties of resin composites. Thus, the objective of this study was to evaluate the effect of three different composite resins on the polymerization process by Vickers hardness test. The samples were prepared using three different composite resins, as follow: group I-P-60 (3M/ESPE); group II-Herculite XRV (Kerr), and group III-Durafill (Heraeus-Kulzer). The samples were made in a polytetrafluoroethylene mould, with a rectangular cavity measuring 7 mm in length, 4 mm in width, and 3 mm in thickness. The samples were photo-activated by one light-curing unit based on blue LEDs (Ultrablue III-DMC/Brazil) for 20 and 40 s of irradiation times. The Vickers hardness test was performed 24 h after the photo-activation until the standardized depth of 3 mm. The Vickers hardness mean values varied from 158.9 (+/- 0.81) to 81.4 (+/- 1.94) for P-60, from 138.7 (+/- 0.37) to 61.7 (+/- 0.24) for Herculite XRV, and from 107. 5 (+/- 0.81) to 44.5 (+/- 1.36) for Durafill composite resins photo-activated during 20 s for the 1st and 2nd mm, respectively. During 40 s of photo-activation, the Vickers hardness mean values were: from 181.0 (+/- 0.70) to 15.6 (+/- 0.29) for P-60, and from 161.8 (+/- 0.41) to 11.2 (+/- 0.17) for Herculite XRV composite resins, for the 1st and 3th mm, respectively. For Durafill composite resin the mean values varied from 120.1 (+/- 0.66) to 61.7 (+/- 0.20), for the 1st and 2nd mm, respectively. The variation coefficient (CV) was in the most of the groups lower than 1%, then the descriptive statistic analysis was used. The Vickers hardness mean values for Durafill were lower than P-60 and Herculite XRV composite resins for 20 and 40 s of irradiation time. The polymerization process was greatly affected by the composition of the composite resins.
Resumo:
The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples (n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm(2), respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey`s test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements.
Resumo:
We introduce a stochastic heterogeneous interacting-agent model for the short-time non-equilibrium evolution of excess demand and price in a stylized asset market. We consider a combination of social interaction within peer groups and individually heterogeneous fundamentalist trading decisions which take into account the market price and the perceived fundamental value of the asset. The resulting excess demand is coupled to the market price. Rigorous analysis reveals that this feedback may lead to price oscillations, a single bounce, or monotonic price behaviour. The model is a rare example of an analytically tractable interacting-agent model which allows LIS to deduce in detail the origin of these different collective patterns. For a natural choice of initial distribution, the results are independent of the graph structure that models the peer network of agents whose decisions influence each other. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Let f: M -> M be a fiber-preserving map where S -> M -> B is a bundle and S is a closed surface. We study the abelianized obstruction, which is a cohomology class in dimension 2, to deform f to a fixed point free map by a fiber-preserving homotopy. The vanishing of this obstruction is only a necessary condition in order to have such deformation, but in some cases it is sufficient. We describe this obstruction and we prove that the vanishing of this class is equivalent to the existence of solution of a system of equations over a certain group ring with coefficients given by Fox derivatives.
Resumo:
The main purpose of this work is to study fixed points of fiber-preserving maps over the circle S(1) for spaces which are fiber bundles over S(1) and the fiber is the Klein bottle K. We classify all such maps which can be deformed fiberwise to a fixed point free map. The similar problem for torus fiber bundles over S(1) has been solved recently.
Resumo:
We design and investigate a sequential discontinuous Galerkin method to approximate two-phase immiscible incompressible flows in heterogeneous porous media with discontinuous capillary pressures. The nonlinear interface conditions are enforced weakly through an adequate design of the penalties on interelement jumps of the pressure and the saturation. An accurate reconstruction of the total velocity is considered in the Raviart-Thomas(-Nedelec) finite element spaces, together with diffusivity-dependent weighted averages to cope with degeneracies in the saturation equation and with media heterogeneities. The proposed method is assessed on one-dimensional test cases exhibiting rough solutions, degeneracies, and capillary barriers. Stable and accurate solutions are obtained without limiters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The fragmentation mechanisms of singlet oxygen [O(2) ((1)Delta(g))]-derived oxidation products of tryptophan (W) were analyzed using collision-induced dissociation coupled with (18)O-isotopic labeling experiments and accurate mass measurements. The five identified oxidized products, namely two isomeric alcohols (trans and cis WOH), two isomeric hydroperoxides (trans and cis WOOH), and N-formylkynurenine (FMK), were shown to share some common fragment ions and losses of small neutral molecules. Conversely, each oxidation product has its own fragmentation mechanism and intermediates, which were confirmed by (18)O-labeling studies. Isomeric WOH lost mainly H(2)O + CO, while WOOH showed preferential elimination of C(2)H(5)NO(3) by two distinct mechanisms. Differences in the spatial arrangement of the two isomeric WOHs led to differences in the intensities of the fragment ions. The same behavior was also found for trans and cis WOOH. FMK was shown to dissociate by a diverse range of mechanisms, with the loss of ammonia the most favored route. MS/MS analyses, (18)O-labeling, and H(2)(18)O experiments demonstrated the ability of FMK to exchange its oxygen atoms with water. Moreover, this approach also revealed that the carbonyl group has more pronounced oxygen exchange ability compared with the formyl group. The understanding of fragmentation mechanisms involved in O(2) ((1)Delta(g))-mediated oxidation of W provides a useful step toward the structural characterization of oxidized peptides and proteins. (J Am Soc Mass Spectrom 2009, 20, 188-197) (C) 2009 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry
Resumo:
Oxidation of cholesterol (Ch) by a variety of reactive oxygen species gives rise mainly to hydroperoxides and aldehydes. Despite the growing interest in Ch-oxidized products, the detection and characterization of these products is still a matter of concern. In this work, the main Ch-oxidized products, namely, 3 beta-hydroxycholest-5-ene-7 alpha-hydroperoxide (7 alpha-OOH), 3 beta-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 alpha-hydroperoxide (6 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH), and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld), were detected in the same analysis using high-performance liquid chromatography (HPLC) coupled to dopant assisted atmospheric pressure photoionization tandem mass spectrometry. The use of selected reaction monitoring mode (SRM) allowed a sensitive detection of each oxidized product, while the enhanced product ion mode (EPI) helped to improve the confidence of the analyses. Isotopic labeling experiments enabled one to elucidate mechanistic features during fragmentation processes. The characteristic fragmentation pattern of Ch-oxidized products is the consecutive loss of 1120 molecules, yielding cationic fragments at m/z 401, 383, and 365. Homolytic scissions of the peroxide bond are also seen. With (18)O-labeling approach, it was possible to establish a fragmentation order for each isomer. The SRM transitions ratio along with EPI and (18)O-labeled experiments give detailed information about differences for water elimination, allowing a proper discrimination between the isomers:Phis is of special interest considering the emerging role of Ch-oxidized products in the development of diseases.
Resumo:
Exocyclic DNA adducts produced by exogenous and endogenous compounds are emerging as potential tools to study a variety of human diseases and air pollution exposure. A highly sensitive method involving online reverse-phase high performance liquid chromatography with electrospray tandem mass spectrometry detection in the multiple reaction monitoring mode and employing stable isotope-labeled internal standards was developed for the simultaneous quantification of 1,N(2)-etheno-2`-deoxyguanosine (1,N(2)-epsilon dGuo) and 1,N(2)-propano-2`-deoxyguanosine (1,N(2)-propanodGuo) in DNA. This methodology permits direct online quantification of 2`-deoxyguanosine and ca. 500 amol of adducts in 100 mu g of hydrolyzed DNA M the same analysis. Using the newly developed technique, accurate determinations of 1,N(2)-etheno-2`-deoxyguanosine and 1,N2-propano-2`-deoxyguanosine levels in DNA extracts of human cultured cells (4.01 +/- 0.32 1,N(2)-epsilon dGuo/10(8) dGuo and 3.43 +/- 0.33 1,N(2)-propanodGuo/10(8) dGuo) and rat tissue (liver, 2.47 +/- 0.61 1,N(2)-epsilon dGuo/10(8) dGuo and 4.61 +/- 0.69 1,N(2)-propanodGuo/108 dGuo; brain, 2.96 +/- 1.43,N(2)-epsilon dGuo/10(8) dGuo and 5.66 +/- 3.70 1,N(2)-propanoclGuo/10(8) dGuo; and lung, 0,87 +/- 0.34 1,N(2)-edGuo/ 10(8) dGuo and 2.25 +/- 1.72 1,N(2)-propanodGuo/10(8) dGuo) were performed. The method described herein can be used to study the biological significance of exocyclic DNA adducts through the quantification of different adducts in humans and experimental an with pathological conditions and after air pollution exposure.
Resumo:
Toluquinone-cyclopentadiene Diels-Alder epoxide adducts react with sulfur and oxygen nucleophiles under heterogeneous conditions, leading to products resulting from the epoxide ring opening and from skeletal rearrangement, respectively. Pyrolysis of the sulfanyl adducts gave the new 3-sulfanyltoluquinones (1).
Resumo:
The pH-structure correlation of the products of aniline peroxydisulfate reaction was mainly investigated by resonance Raman spectroscopy. The reactions of aniline and ammonium peroxydisulfate were carried out in aqueous solutions of initial pH ranging from 4.9 to 13.2 and monomer/oxidant molar ratio of 4/1. For an initial pH of 4.9, the spectroscopic techniques showed that the emeraldine salt form of polyaniline (PANI-ES) is the main product, corroborating that the usual head-to-tail coupling mechanism is taking place. The resonance Raman spectra at 1064 nm exciting wavelength were useful to detect the emeraldine salt as a minor product for reactions at an initial pH of 5.3-11.5. The Raman spectra of the main product of the reaction at initial pH of 13.2 excited at 1064 and 413.1 nm showed new spectral features consistent with 1,4-Michael-type adducts of aniline monomers and 1,4-benzoquinone-monoimine unit. These compounds and their products of hydrolysis/oxidation are the predominant species for the reaction media of initial pH from 5.3 to 13.2. In order to get PANI with different nanoscale morphologies, a pH value of more than 0 or 1 was used in the aniline polymerization. The spectroscopic data obtained in this work reveal that head-to-tail coupling does not occur when aniline reacts at media pH higher than about 5. It is suggested that chemical structures of the products of aniline oxidation by an unusual mechanism are the driving force for the development of assorted morphologies. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Lithium ""butylchalcogenolates are generated in situ by reacting the elements (S, Se, and Te) with (n)butyl-lithium at 0 degrees C. Reaction of the lithium alkylchalcogenolates with activated alkenes and aldehydes gives the corresponding aldol adducts. The selenium-containing products give Morita-Baylis-Hillman adducts after the oxidation/elimination of the selenoxide. The whole sequence can be performed in a one-pot procedure. (C) 2009 Elsevier Ltd. All rights reserved.