110 resultados para conserved epitopes
Resumo:
The insulin/insulin-like signaling (IIS) pathway is an evolutionarily conserved module in the control of body size and correlated organ growth in metazoans. In the highly eusocial bees, the caste phenotypes differ not only in size and several structural features but also in individual fitness and life history. We investigated the developmental expression profiles of genes encoding the two insulin-like peptides (AmILP-1 and AmILP-2) and the two insulin receptors (AmInR-1 and AmInR-2) predicted in the honey bee genome. Quantitative PCR analysis for queen and worker larvae in critical stages of caste development showed that AmILP-2 is the predominantly transcribed ILP in both castes, with higher expression in workers than in queens. Expression of both InR genes sharply declined in fourth instar queen larvae, but showed little modulation in workers. On first sight, these findings are non-intuitive, considering the higher growth rates of queens, but they can be interpreted as possibly antagonistic crosstalk between the IIS module and juvenile hormone. Analyzing AmInR-1 and AmInR-2 expression in ovaries of queen and worker larvae revealed low transcript levels in queens and a sharp drop in AmInR-2 expression in fifth instar worker larvae, indicating relative independence in tissue-specific versus overall IIS pathway activity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIF alpha/Sima, HIF beta/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND - Multibacillary (MB) leprosy may be manifested with antiphospholipid antibodies (aPL), among which anti-beta(2)GP1 (beta(2)-glycoprotein 1). High titers of aPL are associated with APS (Antiphospholipid Syndrome), characterized by thrombosis. The mutation Val247Leu in the domain V of beta(2)GP1 exposes hidden epitopes with consequent development of anti-beta(2)GP1 antibodies. OBJECTIVE: To evaluate the Val247Leu polymorphism of beta(2)GP1 gene and its correlation with anti-beta(2)GP1 antibodies in leprosy patients. METHODS: The Val247Leu polymorphism was performed by PCR-RFLP and anti-beta(2)GP1 antibodies were measured by ELISA. RESULTS: The genotypic Val/Val was more prevalent in the leprosy group, compared to controls. Regarding the 7 MB patients with APS, four presented heterozygosis and three, Val/Val homozygosis. Although higher titrations of anti-beta(2)GP1 IgM antibodies were seen in MB leprosy group with Val/Leu and Val/Val genotypes, there was no statistical difference when compared to Leu/Leu genotype. CONCLUSION: The prevalence of Val/Val homozygosis in leprosy group can partially justify the presence of anti-beta(2)GP1 IgM antibodies in MB leprosy. The description of heterozygosis and Val/Val homozygosis in 7 patients with MB leprosy and thrombosis corroborates the implication of anomalous phenotype expression of beta(2)GP1 and development of anti-beta(2)GP1 antibodies, with consequent thrombosis and APS.
Resumo:
Heat shock proteins are molecular chaperones linked to a myriad of physiological functions in both prokaryotes and eukaryotes. In this study, we show that the Aspergillus nidulans hsp30 (ANID_03555.1), hsp70 (ANID_05129.1), and hsp90 (ANID_08269.1) genes are preferentially expressed in an acidic milieu, whose expression is dependent on the palA (+) background under optimal temperature for fungal growth. Heat shock induction of these three hsp genes showed different patterns in response to extracellular pH changes in the palA(+) background. However, their accumulation upon heating for 2 h was almost unaffected by ambient pH changes in the palA (-) background. The PalA protein is a member of a conserved signaling cascade that is involved in the pH-mediated regulation of gene expression. Moreover, we identified several genes whose expression at pH 5.0 is also dependent on the palA (+) background. These results reveal novel aspects of the heat- and pH-sensing networks of A. nidulans.
Resumo:
Heat shock proteins belong to a conserved superfamily of molecular chaperones found in prokaryotes and eukaryotes. These proteins are linked to a myriad of physiological functions. In this study, we show that the N. crassa hsp70-1 (NCU09602.3) and hsp70-2 (NCU08693.3) genes are preferentially expressed in an acidic milieu after 15 h of cell growth in sufficient phosphate at 30A degrees C. No significant accumulation of these transcripts was detected at alkaline pH values. Both genes accumulated to a high level in mycelia that were incubated for 1 h at 45A degrees C, regardless of the phosphate concentration and extracellular pH changes. Transcription of the hsp70-1 and hsp70-2 genes was dependent on the pacC (+) background in mycelia cultured under optimal growth conditions or at 45A degrees C. The pacC gene encodes a Zn-finger transcription factor that is involved in the regulation of gene expression by pH. Heat shock induction of these two hsp genes in mycelia incubated in low-phosphate medium was almost not altered in the nuc-1 (-) background under both acidic and alkaline pH conditions. The NUC-1 transcriptional regulator is involved in the derepression of nucleases, phosphatases, and transporters that are necessary for fulfilling the cell`s phosphate requirements. Transcription of the hsp70-3 (NCU01499.3) gene followed a different pattern of induction-the gene was depressed under insufficient phosphate conditions but was apparently unaffected by alkalinization of the culture medium. Moreover, this gene was not induced by heat shock. These results reveal novel aspects of the heat-sensing network of N. crassa.
Resumo:
A plausible approach to evaluate the inhibitory action of antifungals is through the investigation of the fungal resistance to these drugs. We describe here the molecular cloning and initial characterization of the A. nidulans lipA gene, where mutation (lipA1) conferred resistance to undecanoic acid, the most fungitoxic fatty acid in the C(7:0)-C(18:0) series. The lipA gene codes for a putative lipase with the sequence consensus GVSIS and WIFGGG as the catalytic signature. Comparison of the wild-type and LIP1 mutant strain nucleotide sequences showed a G -> A change in lipA1 allele, which results in a Glu(214) -> Lys substitution in LipA protein. This ionic charge change in a conserved LipA region, next to its catalytic site, may have altered the catalytic properties of this enzyme resulting in resistance to undecanoic acid.
Resumo:
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Resumo:
Transposons of the Mutator superfamily have been widely described in plants, but only recently have metazoan organisms been shown to harbour them. In this work we describe novel Mutator superfamily transposons from the genomes of the human parasites Schistosoma mansoni and S. japonicum, which we name Curupira-1 and Curupira-2. Curupira elements do not have Terminal Inverted Repeats (TIRs) at their extremities and generate Target Site Duplications (TSDs) of 9 base pairs. Curupira-2 transposons code for a conserved transposase and SWIM zinc finger domains, while Curupira-1 elements comprise these same domains plus a WRKY zinc finger. Alignment of transcript sequences from both elements back to the genomes indicates that they are subject to splicing to produce mature transcripts. Phylogenetic analyses indicate that these transposons represent a new lineage of metazoan Mutator-like elements with characteristics that are distinct from the recently described Phantom elements. Description of these novel schistosome transposons provides new insights in the evolution of transposable elements in schistosomes.
Resumo:
Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin-sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines.
Resumo:
Snake venom C-type lectin-like proteins (CLPs) are ubiquitously found in Viperidae snake venoms and differ from the C-type lectins as they display different biological activities but no carbohydrate-binding activity. Previous analysis of the transcriptome obtained from the Bothrops insularis venom gland showed the presence of two clusters homologous to bothrojaracin (BJC) chains a and P. In an effort to identify a new BJC-like molecule, we used an approach associated with proteomic technologies to identify the presence of the expressed protein and then to purify and characterize a new thrombin inhibitor from B. insularis venom. We also constructed homology models of this protein and BJC, which were compared with other C-type lectin-like family members and revealed several conserved features of this intriguing snake venom toxin family. (C)0 2007 Elsevier Ltd. All rights reserved.
Resumo:
Leptospirosis is a zoonosis of multisystem involvement caused by pathogenic strains of the genus Leptospira. In the last few years, intensive studies aimed at the development of a vaccine have provided important knowledge about the nature of the immunological mechanisms of the host. The purpose of this study was to analyze the immune responses to two recombinant proteins, MPL17 and MPL21 (encoded by the genes LIC10765 and LIC13131, respectively) of Leptospira interrogans serovar Copenhageni in individuals during infection. The recombinant proteins were expressed in Escherichia coli as six-His tag fusion proteins and were purified from the soluble bacterial fraction by affinity chromatography with Ni2+ -charged resin. The recombinant proteins were used to evaluate their ability to bind to immunoglobulin G (IgG) (and IgG subclass) or IgM antibodies in serum samples from patients in the early and convalescent phases of leptospirosis (n = 52) by enzyme-linked immunosorbent assays. The prevalences of total IgG antibodies against MPL17 and MPL21 were 38.5% and 21.2%, respectively. The titers achieved with MPL17 were statistically significantly higher than those obtained by the reference microscopic agglutination test. The specificity of the assay was estimated to be 95.5% for MPL17 and 80.6% for MPL21 when serum samples from individuals with unrelated febrile diseases and control healthy donors were tested. The proteins are conserved among Leptospira strains that cause human and animal diseases. MPL17 and MPL21 are most likely new surface proteins of leptospires, as revealed by liquid-phase immunofluorescence assays with living organisms. Our results demonstrate that these recombinant proteins are highly immunogenic and, when they are used together, might be useful as a means of diagnosing leptospirosis.
Resumo:
Feline immunodeficiency virus (FIV) causes a slow progressive degeneration of the immune system which eventually leads to a disease comparable to acquired immune deficiency syndrome (AIDS) in humans. FIV has extensive sequence variation, a typical feature of lentiviruses. Sequence analysis showed that diversity was not evenly distributed throughout the genome, but was greatest in the envelope gene, env. The virus enters host cells via a sequential interaction, initiated by the envelope glycoprotein (env) binding the primary receptor molecule CD134 and followed by a subsequent interaction with chemokine co-receptor CXCR4. The purpose of this study was to isolate and characterize isolates of FIV from an open shelter in Sao Paulo, Brazil. The separated PBMC from 11 positive cats were co-cultured with MYA-1 cells. Full-length viral env glycoprotein genes were amplified and determined. Chimeric feline x human CD134 receptors were used to investigate the receptor utilization of 17 clones from Brazilian isolates of Fly. Analyses of the sequence present of molecular clones showed that all clones grouped within subtype B. In contrast to the virulent primary isolate FIV-GL8, expression of the first cysteine-rich domain (CRD1) of feline CD134 in the context of human CD134 was sufficient for optimal receptor function for all Brazilian FIV isolates tested. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Rabies virus (RABV) isolates from two species of canids and three species of bats were analyzed by comparing the C-terminal region of the G gene and the G-L intergenic region of the virus genome. Intercluster identities for the genetic sequences of the isolates showed both regions to be poorly conserved. Phylogenetic trees were generated by the neighbor-joining and maximum parsimony methods, and the results were found to agree between the two methods for both regions. Putative amino acid sequences obtained from the G gene were also analyzed, and genetic markers were identified. Our results suggest that different genetic lineages of RABV are adapted to different animal species in Brazil.
Resumo:
Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease that affects populations worldwide. We have identified in proteomic studies a protein that is encoded by the gene LIC10314 and expressed in virulent strain of L. interrogans serovar Pomona. This protein was predicted to be surface exposed by PSORT program and contains a p83/100 domain identified by BLAST analysis that is conserved in protein antigens of several strains of Borrelia and Treponema spp. The proteins containing this domain have been claimed antigen candidates for serodiagnosis of Lyme borreliosis. Thus, we have cloned the LIC10314 and expressed the protein in Escherichia coli BL21-SI strain by using the expression vector pAE. The recombinant protein tagged with N-terminal hexahistidine was purified by metal-charged chromatography and characterized by circular dichroism spectroscopy. This protein is conserved among several species of pathogenic Leptospira and absent in the saprophytic strain L. biflexa. We confirm by liquid-phase immunofluorescence assays with living organisms that this protein is most likely a new surface leptospiral protein. The ability of the protein to mediate attachment to ECM components was evaluated by binding assays. The leptospiral protein encoded by LIC10314, named Lsa63 (Leptospiral surface adhesin of 63 kDa), binds strongly to laminin and collagen IV in a dose-dependent and saturable fashion. In addition, Lsa63 is probably expressed during infection since it was recognized by antibodies of serum samples of confirmed-leptospirosis patients in convalescent phase of the disease. Altogether, the data suggests that this novel identified surface protein may be involved in leptospiral pathogenesis. (C) 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
The complete genome sequence of wild-type rabies virus (RABV) isolated from a wild Brazilian hoary fox (Dusicyon sp.), the BR-Pfx1 isolate, was determined and compared with fixed RABV strains. The genome structure and organization of the BR-Pfx1 isolate were composed of 11,924 nt and included the five standard genes of rhabdoviruses. Sequences of mRNA start and stop signals for transcription were highly conserved among all structural protein genes of the BR-Pfx1 isolate. All amino acid residues in the glycoprotein (G) gene associated with pathogenicity were retained in the BR-Pfx1 isolate, while unique amino acid substitutions were found in antigenic region I of the nucleoprotein gene and III of G. These results suggest that although the standard genome structure and organization of the RABV isolate are common between the BR-Pfx1 isolate and fixed RABV strains, the unique amino acid substitutions in functional sites of the BR-Pfx1 isolate may result in different biological characteristics from fixed RABV strains.