183 resultados para TITANIUM DIOXIDE NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembled films from SnO2 and polyallylamine (PAH) were deposited on gold via ionic attraction by the layer-by-layer(LbL) method. The modified electrodes were immersed into a H2PtCl6 solution, a current of 100 mu A was applied, and different electrodeposition times were used. The SnO2/PAH layers served as templates to yield metallic platinum with different particle sizes. The scanning tunnel microscopy images show that the particle size increases as a function of electrodeposition time. The potentiodynamic profile of the electrodes changes as a function of the electrodeposition time in 0.5 mol L-1 H2SO4, at a sweeping rate of 50mVs(-1). Oxygen-like species are formed at less positive potentials for the Pt-SnO2/PAH film in the case of the smallest platinum particles. Electrochemical impedance spectroscopy measurements in acid medium at 0.7 V show that the charge transfer resistance normalized by the exposed platinum area is 750 times greater for platinum electrode (300 k Omega cm(2)) compared with the Pt-SnO2/PAH film with 1 min of electrodeposition (0.4 k Omega cm(2)). According to the Langmuir-Hinshelwood bifunctional mechanism, the high degree of coverage with oxygen-like species on the platinum nanoparticles is responsible for the electrocatalytic activity of the Pt-SnO2/PAH concerning ethanol electrooxidation. With these features, this Pt-SnO2/PAH film may be grown on a proton exchange membrane (PEM) in direct ethanol fuel cells (DEFC). (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room-temperature measurements of the magnetic susceptibility of Bovine Serum Albumin-based nanocapsules (50 to 300 nm in size) loaded with different amounts of maghemite nanoparticles (7.6 nm average diameter) have been carried out in this study The field (H) dependence of the imaginary peak susceptibility (f(P)) of the nanocomposite samples was investigated in the range of 0 to 4 kOe. From the analysis of the f(P) x H curves the concentration (N) dependence of the effective maghemite magnetocrystalline energy barrier (E) was obtained. Analysis of the E x N data was performed using a modified Morup-Tronc [Phys. Rev. Lett. 72, 3278 (1994)] model, from which a huge contribution from the magnetocrystalline surface anisotropy was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary and ternary Pt-based catalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by TEM and XRD. XRD showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/W and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm(-3) H2SO4) and in the presence of ethanol. The results obtained at room temperature showed that the PtSnW/C catalyst display better catalytic activity for ethanol oxidation compared to PtW/C catalyst. The reaction products (acetaldehyde, acetic acid and carbon dioxide) were analyzed by HPLC and identified by in situ infrared reflectance spectroscopy. The latter technique also allowed identification of the intermediate and adsorbed species. The presence of linearly adsorbed CO and CO2 indicated that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 degrees C, the Pt85Sn8W7/C catalyst gave higher current and power performances as anode material in a direct ethanol fuel cell (DEFC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Itraconazole (ITZ) is a drug used to treat various fungal infections and may cause side effects. The aim of this study was to develop and evaluate the in vitro activity of DMSA-PLGA nanoparticles loaded with ITZ against Paracoccidioides brasiliensis, as well as their cytotoxicity. Nanoparticles were prepared using the emulsification-evaporation technique and characterized by their encapsulation efficiency, morphology (TEM), size (Nanosight) and charge (zeta potential). Antifungal efficacy in P brasiliensis was determined by minimal inhibition concentration (MIC), and cytotoxicity using MU assay. ITZ was effectively incorporated in the PLGA-DMSA nanoparticles with a loading efficiency of 72.8 +/- 3.50%. The shape was round with a solid polymeric structure, and a size distribution of 174 +/- 86 nm (Average +/- SD). The particles were negatively charged. ITZ-NANO presented antifungal inhibition (MIC = 6.25 ug/mL) against P brasiliensis and showed lower in vitro cytotoxicity than free drug (ITZ).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical and bioanalytical methods of high-performance liquid chromatography with fluorescence detection (HPLC-FLD) were developed and validated for the determination of chloroaluminum phthalocyanine in different formulations of polymeric nanocapsules, plasma and livers of mice. Plasma and homogenized liver samples were extracted with ethyl acetate, and zinc phthalocyanine was used as internal standard. The results indicated that the methods were linear and selective for all matrices studied. Analysis of accuracy and precision showed adequate values, with variations lower than 10% in biological samples and lower than 2% in analytical samples. The recoveries were as high as 96% and 99% in the plasma and livers, respectively. The quantification limit of the analytical method was 1.12 ng/ml, and the limits of quantification of the bioanalytical method were 15 ng/ml and 75 ng/g for plasma and liver samples, respectively. The bioanalytical method developed was sensitive in the ranges of 15-100 ng/ml in plasma and 75-500 ng/g in liver samples and was applied to studies of biodistribution and pharmacokinetics of AlClPc. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic investigation of spinel ferrite nanoparticles dispersed in biocompatible polymeric microspheres is reported in this study. X-ray diffraction data analysis confirms the presence of nanosized CoFe(2)O(4) particles (mean size of similar to 8 nm). This finding is corroborated by transmission electron microscopy micrographs. Magnetization isotherms suggest a spin disorder likely occurring at the nanoparticle`s surface. The saturation magnetization value is used to estimate particle concentration of 1.6 x 10(18) cm(-3) dispersed in the polymeric template. A T(1/2) dependence of the coercive field is determined in the low-temperature region (T < 30 K). The model of non-interacting mono-domains is used to estimate an effective magnetic anisotropy of K(eff) = 0.6 x 10(5) J/m(3). The K(eff) value we found is lower than the value reported for spherically-shaped CoFe(2)O(4) nanoparticles, though consistent with the low coercive field observed in the investigated sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions between phosphorylcholine-substituted chitosans (PC-CH) and calf-thymus DNA (ct-DNA) were investigated focusing on the effects of the charge ratio, the pH, and phosphorylcholine content on the size and stability of the complexes using the ethidium bromide fluorescence assay, gel electrophoresis, dynamic light scattering. and fluorescence microscopy. The size and colloidal stability of deacetylated chitosan (CH/DNA) and PC-CH/DNA complexes were strongly dependent on phosphorylcholine content, charge ratios, and pH. The interaction strengths were evaluated from ethidium bromide fluorescence, and at N/P ratios higher than 5.0, no DNA release was observed in any synthesized PC-CH/DNA polyplexes by gel electrophoresis. The PC-CH/DNA polyplexes exhibited a higher resistance to aggregation compared to deacetylated chitosan (CH) at neutral pH. At low pH values highly charged chitosan and its phosphorylcholine derivatives had strong binding affinity with DNA, whereas at higher pH Values CH formed large aggregates and only C-CH derivatives were able to form small nanoparticles with hydrodynamic radii varying from 100 to 150 nm. Nanoparticles synthesized at low ionic strength with PC-CH derivatives containing moderate degrees of substitution (DS = 20% and 40%) remained stable for weeks. Photomicroscopies also confirmed that rhodamine-labeled PC(40)CH derivative nanoparticles presented higher colloidal stability than those synthesized using deacetylated chitosan. Accordingly, due to their improved physicochemical properties these phosphorylcholine-modified chitosans provide new perspectives for controlling the properties of polyplexes. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives This study evaluated the influence of oestrogen deficiency and its therapies on bone tissue around osseointegrated implants. Methods Implants were placed in 66 female rats tibiae. The animals were assigned into five groups: control (CTL), sham, ovariectomy (OVX), oestrogen (EST), and alendronate (ALE). While CTL was sacrificed 60 days after implant placement, other groups were subjected to ovariectomy or sham surgery according to group and euthanized after 90 days. Blood and urine samples were collected at sacrifice day for osteocalcin (OCN) and deoxypyridinoline (DPD) quantification. Densitometry of femur and lumbar vertebrae was performed in order to evaluate rats` skeletal impairment. Non-decalcified sections were referred to fluorescent and light microscopy for analyses of mineral apposition rate (MAR), eroded and osteoclastic surfaces, bone-to-implant contact (BIC), and bone area fraction occupancy (BAFO). Results Results from the OVX group showed significantly lower bone mineral density (BMD), BIC, BAFO, and MAR, while OCN, deoxipiridinoline, eroded surface and ostecoclastic surface were increased compared with the other groups of the study. ALE reduced OCN and DPD concentrations, MAR, osteoclastic and eroded surfaces, and no difference was in BIC and BAFO relative to SHAM. EST and CTL showed similar results to SHAM for measurements. Conclusions Oestrogen deficiency exerted a negative influence on bone tissue around implants, while oestrogen replacement therapy and alendronate were effective against its effects. Although alendronate therapy maintained the quantity of bone around implants, studies evaluating bone turnover kinetics are warranted. To cite this article:Giro G, Coelho PG, Pereira RMR, Jorgetti V, Marcantonio E Jr, Orrico SRP. The effect of oestrogen and alendronate therapies on postmenopausal bone loss around osseointegrated titanium implants.Clin. Oral Impl. Res. 22, 2011; 259-264.doi: 10.1111/j.1600-0501.2010.01989.x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide (CO(2)) has been used in the food industry as an antimicrobial agent. This study aimed to investigate whether CO(2) pneumoperitoneum might act similarly as an antimicrobial agent in the infected peritoneal cavity. Peritonitis was induced in 58 rats by intraabdominal injection of an Escherichia coli inoculum (6 x 105 colony-forming units [CFU]/ml). Control rats were injected with saline solution. The rats were randomly divided into four groups: rat control (RC, n = 15), bacterial inoculation control (BIC, n = 10), bacterial inoculation and laparotomy (BIL, n = 17), and bacterial inoculation and CO(2) pneumoperitoneum (BIP, n = 16). The survival rates and histopathologic changes in the abdominal wall muscles, spleen, liver, intestines, and omentum were evaluated, and the samples were classified as ""preserved"" or ""inflamed"" (acute inflammation or tissue regeneration). The survival rates for the four groups were as follows: RC (100%), BIP (75%), BIL (53%), and BIC (30%). With regard to survival rates, statistically significant differences were observed between the following groups: RC and BIC (p = 0.0009), RC and BIL (p = 0.0045), BIP and BIC (p = 0.0332), and RC and BIP (p = 0.0470). No significant differences regarding survival rates were observed between the BIL and BIC groups or between the BIP and BIL groups. With regard to the number of inflamed samples per group, a statistically significant difference was observed between the BIC and RC groups and the BIL and RC groups (p = 0.05). Carbon dioxide pneumoperitoneum has a protective effect against bacterial peritonitis induced in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates the effect of zoledronic acid (ZOL) on the osseointegration of titanium implants in rabbits with glucocorticoid (GC)-induced bone loss, and our findings demonstrated that a single dose of ZOL is able to reverse the detrimental effects of GCs on the osseointegration of titanium implants. The purpose of this study is to evaluate the effect of ZOL on the osseointegration of titanium implants in rabbits with GC-induced bone loss. Three groups of six NZW rabbits were treated for 18 weeks with saline (SALINE), GC (methylprednisolone, 0.35 mg/kg three times a week), or GC + ZOL (methylprednisolone + single dose of ZOL, 0.1 mg/kg). The animals received a titanium implant in the left tibia after 6 weeks and were killed at the 18th week. Bone mineral density (BMD) was measured with dual-energy X-ray absorptiometry at baseline, eighth week (W8), and 18th week (W18) after treatment to determine the change upon treatment (a dagger BMD). Histomorphometric and serum bone alkaline phosphatase analysis (BAP) were also performed. At W8, GC group had a significant reduction in lumbar spine and tibia BMD compared with SALINE (p = 0.003 and p = 0.000), as also observed for GC + ZOL group (p = 0.014 and p = 0.003) just 2 weeks after ZOL treatment. In contrast, at W18, the GC + ZOL had an evident BMD rescue with similar lumbar spine and tibia a dagger BMD compared with SALINE (0.043 +/- 0.006 vs. 0.055 +/- 0.009 g/cm(2), p = 0.457 and 0.027 +/- 0.003 vs. 0.041 +/- 0.011 g/cm(2), p = 0.232) and a significantly higher a dagger BMD compared with the GC (p = 0.024 and p = 0.001). Histomorphometry revealed that osseointegration was significantly reduced in GC (tibia cortical thickness and diameter, bone-implant contact, total and peri-implant bone area) whereas GC + ZOL had these parameters similar to SALINE (p > 0.05). Likewise, ZOL reversed the BAP alteration induced by GC. Our findings demonstrated that a single dose of ZOL is able to reverse the detrimental effects of glucocorticoids on the osseointegration of titanium implants, suggesting that ZOL therapy may improve the outcome of bone implants in patients with glucocorticoid-induced osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we evaluated the biodistribution and the elimination kinetics of a biocompatible magnetic fluid, Endorem (TM), based on dextrancoated Fe(3)O(4) nanoparticles endovenously injected into Winstar rats. The iron content in blood and liver samples was recorded using electron paramagnetic resonance (EPR) and X-ray fluorescence (XRF) techniques. The EPR line intensity at g=2.1 was found to be proportional to the concentration of magnetic nanoparticles and the best temperature for spectra acquisition was 298 K. Both EPR and XRF analysis indicated that the maximum concentration of iron in the liver occurred 95 min after the ferrofluid administration. The half-life of the magnetic nanoparticles (MNP) in the blood was (11.6 +/- 0.6) min measured by EPR and (12.6 +/- 0.6) min determined by XRF. These results indicate that both EPR and XRF are very useful and appropriate techniques for the study of kinetics of ferrofluid elimination and biodistribution after its administration into the organism. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC133), and thus to express the antigenic labeling evidence for the stem cells C D133(+). The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the C D133(+) cells (similar to 6.16 x 10(5) pg in the volume of 2 mu l containing 4.5 x 1011 SPION). The quantitative method led to the result of 1.70 x 10(-13) mol of Fe (9.5 pg), or 7.0 x 10(6) nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI).