100 resultados para Micro Tomography
Resumo:
Objectives: The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. Methods: 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. Results: The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were frequencies of nuclear alterations indicate of apoptosis (P < 0.001). Conclusions: These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.
Resumo:
We report the use of optical coherence tomography (OCT) to detect and quantify demineralization process induced by S. mutans biofilm in third molars human teeth. Artificial lesions were induced by a S. mutans microbiological culture and the samples (N = 50) were divided into groups according to the demineralization time: 3, 5, 7, 9, and 11days. The OCT system was implemented using a light source delivering an average power of 96 mu W in the sample arm, and spectral characteristics allowing 23 mu m of axial resolution. The images were produced with lateral scans step of 10 pan and analyzed individually. As a result of the evaluation of theses images, lesion depth was calculated as function of demineralization time. The depth of the lesion in the root dentine increased from 70 pm to 230,urn (corrected by the enamel refraction index, 1.62 @ 856 nm), depending of exposure time. The lesion depth in root dentine was correlated to demineralization time, showing that it follows a geometrical progression like a bacteria growth law. [GRAPHICS] Progression of lesion depth in root dentine as function of exposure time, showing that it follows a geometrical progression like a bacteria growth law(C) 2009 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
In this work we evaluate the effectiveness of computed tomography images as a tool to determine magnetic nanoparticle biodistribution over biological tissues. For this purpose, tomography images for magnetic nanoparticles, composed of Fe(3)O(4), coated with 2,3-dimercaptosuccinic acid (DMSA), were generated at several material concentrations. The comparison of CT numbers, calculated from these images generated at clinical conditions, with typical CT numbers for biological tissues, shows that the detection of nanoparticle in most tissues is only possible for high material concentrations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
CaNb(2)O(6) single crystal fibers were grown by the laser-heated pedestal growth technique, directly from the starting reagents. Optically transparent fibers were obtained in the form of rods with elliptical cross-section, free from cracks, impurities, and secondary phases, with an average diameter of 0.4 mm and about 20 mm of length. The fibers grew within the orthorhombic Pbcn columbite structure, with the growth axis nearly parallel to the crystallographic a-direction. The parameters b and c were parallel to the shorter and larger ellipsis axes. A special setup using a microscope was developed to obtain the far-infrared reflectivity spectra of these micrometer-sized fibers, allowing the identification and assignment of 34 of the 38 polar phonons foreseen for the material. From these phonons, the intrinsic dielectric constant ( of 185 THz) could be estimated, showing the potential of the material for applications in microwave circuitry. These results, along with previous polarized Raman data (Cryst. Growth Des. 2010, 10, 1569), allow us to present a comprehensive set of optical phonon modes and to discuss the potential use of designed CaNb(2)O(6) microcrystals in compact optical devices.
Resumo:
This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Purpose: We present an iterative framework for CT reconstruction from transmission ultrasound data which accurately and efficiently models the strong refraction effects that occur in our target application: Imaging the female breast. Methods: Our refractive ray tracing framework has its foundation in the fast marching method (FNMM) and it allows an accurate as well as efficient modeling of curved rays. We also describe a novel regularization scheme that yields further significant reconstruction quality improvements. A final contribution is the development of a realistic anthropomorphic digital breast phantom based on the NIH Visible Female data set. Results: Our system is able to resolve very fine details even in the presence of significant noise, and it reconstructs both sound speed and attenuation data. Excellent correspondence with a traditional, but significantly more computationally expensive wave equation solver is achieved. Conclusions: Apart from the accurate modeling of curved rays, decisive factors have also been our regularization scheme and the high-quality interpolation filter we have used. An added benefit of our framework is that it accelerates well on GPUs where we have shown that clinical 3D reconstruction speeds on the order of minutes are possible.
Resumo:
Schistosoma mansoni is a well-adapted blood-dwelling parasitic helminth, persisting for decades in its human host despite being continually exposed to potential immune attack. Here, we describe in detail micro-exon genes (MEG) in S. mansoni, some present in multiple copies, which represent a novel molecular system for creating protein variation through the alternate splicing of short (<= 36 bp) symmetric exons organized in tandem. Analysis of three closely related copies of one MEG family allowed us to trace several evolutionary events and propose a mechanism for micro-exon generation and diversification. Microarray experiments show that the majority of MEGs are up-regulated in life cycle stages associated with establishment in the mammalian host after skin penetration. Sequencing of RT-PCR products allowed the description of several alternate splice forms of micro-exon genes, highlighting the potential use of these transcripts to generate a complex pool of protein variants. We obtained direct evidence for the existence of such pools by proteomic analysis of secretions from migrating schistosomula and mature eggs. Whole-mount in situ hybridization and immunolocalization showed that MEG transcripts and proteins were restricted to glands or epithelia exposed to the external environment. The ability of schistosomes to produce a complex pool of variant proteins aligns them with the other major groups of blood parasites, but using a completely different mechanism. We believe that our data open a new chapter in the study of immune evasion by schistosomes, and their ability to generate variant proteins could represent a significant obstacle to vaccine development.
Resumo:
A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The highly hydrophobic 5,10,15-triphenyl-20-(3-N-methylpyridinium-yl)porphyrin(3MMe)cationic species was synthesized, characterized and encapsulated in marine atelocollagen/xanthane gum microcapsules by the coacervation method. Further reduction in the capsule size, from several microns down to about 300-400 nm, was carried out successfully by ultrasonic processing in the presence of up to 1.6% Tween 20 surfactant, without affecting the distribution of 3MMe in the oily core. The resulting creamlike product exhibited enhanced photodynamic activity but negligible cytotoxicity towards HeLa cells. The polymeric micro/nanocapsule formulation was found to be about 4 times more phototoxic than the respective phosphatidylcholine lipidic emulsion, demonstrating high potentiality for photodynamic therapy applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The use of whole cells of micro-organisms to bring about the biotransformation of an organic compound offers a number of advantages, but problems caused by enzymatic Promiscuity may be encountered upon With Substrates hearing more than one functional group. A one-pot screening method, in which whole fungal cells were incubated with a Mixture of 4-rnethylcyclohexanone I and phenyl methyl Sulfide 2, has been employed to determine the chemoselectivity of various biocatalysts. The hyphomycetes, Aspergillus terreus CCT 3320 and A. terreus URM 3571, catalysed the oxidation of 2 accompanied by the reduction of I to 4-methylcyclohexanol 1a and, for strain A. terreus CCT 3320, the Baeyer-Villiger oxidation of 1. The Basidomycetes, Trametes versicolor CCB 202, Pycnoporus sanguineus CCB 501 and Trichaptum byssogenum CCB 203, catalysed the oxidation of 2 and the reduction 1, but no Baeyer-Villiger reaction products were detected. In contrast. Trametes rigida CCB 285 catalysed the biotransformation of 1 to 1a, exclusively, in the absence of any detectable Sulfide oxidation reactions. The chemoselective reduction Of (+/-)-2-(phenylthio)cyclohexanone 3 by T. rigida CCB 285 afforded exclusively the (+)-cis-(1R,2S) and (+)-trans-(1S,2S) diastereoisomers of 2-(phenylthio)cyclohexan-1-ol 3a in moderate yields (13% and 27%, respectively) and high enantiomeric excesses (>98%). Chemoselective screening for the reduction of a ketone and/or the oxidation Of a Sulfide group in one pot by whole cells of micro-organisms represents an attractive technique with applications in the development of synthesis of complex molecule hearing different functional groups. (C) 2008 Published by Elsevier Ltd.