96 resultados para near infrared (NIR) spectroscopy
Resumo:
Erbium-doped single crystal fibers, with low phonon energy and fairly high absorption and emission cross sections are interesting laser active media, for compact, near-infrared and/or upconversion lasers. In this work, high optical quality Er3+-doped CaNb2O6 and CaTa2O6 single crystal fibers were successfully grown by the versatile laser-heated pedestal growth technique, and characterized from the structural and spectroscopic points of view. The results indicate that these crystal fiber compositions, which had not been explored so far, offer potential applications, not only as laser active media, but also in other optical devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the metabolism of odontoblast-like MDPC-23 cells subjected to direct LLL irradiation. The cells were seeded (20,000 cells/well) in 24-well plates and incubated for 24 hours at 37 degrees C. After this period, the culture medium (DMEM) was replaced by fresh DMEM supplemented with 2 or 5% (stress induction by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to laser doses of 2, 4, 10, 15 and 25 J/cm(2) from a near infrared InGaAsP diode laser prototype (LASERTable; 780 +/- 3 nm, 40 mW). One control group (sham irradiation) was established for each experimental condition (laser dose x FBS supplementation). Three and 72 hours after the last irradiation, cells were analyzed with respect to metabolism, morphology, total protein expression and alkaline phosphatase (ALP) activity. Higher metabolism and total protein expression were observed 72 hours after the last irradiation at the doses of 15 and 25 J/cm(2) (Mann-Whitney; p<0.05). Higher ALP activity was obtained with 5% FBS when the cells were irradiated with doses of 2 and 10 J/cm(2). For the dose of 25 J/cm(2), the highest ALP activity was observed with 10% FBS. It was concluded that the LLLT parameters used in this study stimulated the metabolic activity of the MDPC-23 cells, especially at the doses of 15 and 25 J/cm(2).
Resumo:
Studies have shown that the increase of cell metabolism depends on the low level laser therapy (LLLT) parameters used to irradiate the cells. However, the optimal laser dose to up-regulate pulp cell activity remains unknown. Consequently, the aim of this study was to evaluate the metabolic response of odontoblast-like cells (MDPC-23) exposed to different LLLT doses. Cells at 20000 cells/cm(2) were seeded in 24-well plates using plain culture medium (DMEM) and were incubated in a humidified incubator with 5% CO(2) at 37 degrees C. After 24 h, the culture medium was replaced by fresh DMEM supplemented with 5% (stress by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to different laser doses from a near infrared diode laser prototype designed to provide a uniform irradiation of the wells. The experimental groups were: G1: 1.5 J/cm(2) + 5% FBS; G2: 1.5 J/cm(2) + 10% FBS; G3: 5 J/cm(2) + 5% FBS; G4: 5 J/cm(2) + 10% FBS; G5: 19 J/cm(2) + 5% FBS; G6: 19 J/cm(2) + 10% FBS. LLLT was performed in 3 consecutive irradiation cycles with a 24-hour interval. Non-irradiated cells cultured in DMEM supplemented with either 5 or 10% FBS served as control groups. The analysis of the metabolic response was performed by the MTT assay 3 h after the last irradiation. G1 presented an increase in SDH enzyme activity and differed significantly (Mann-Whitney test, p < 0.05) from the other groups. Analysis by scanning electron microscopy showed normal cell morphology in all groups. Under the tested conditions, LLLT stimulated the metabolic activity of MDPC-23 cultured in DMEM supplemented with 5% FBS and exposed to a laser dose of 1.5 J/cm(2). These findings are relevant for further studies on the action of near infrared lasers on cells with odontoblast phenotype.
Resumo:
Low-level laser therapy (LLLT), also referred to as therapeutic laser, has been recommended for a wide array of clinical procedures, among which the treatment of dentinal hypersensitivity. However, the mechanism that guides this process remains unknown. Therefore, the objective of this study was to evaluate in vitro the effects of LLL irradiation on cell metabolism (MTT assay), alkaline phosphatase (ALP) expression and total protein synthesis. The expression of genes that encode for collagen type-1 (Col-1) and fibronectin (FN) was analyzed by RT-PCR. For such purposes, oclontoblast-like cell line (MDPC-23) was previously cultured in Petri dishes (15000 cells/cm(2)) and submitted to stress conditions during 12 h. Thereafter, 6 applications with a monochromatic near infrared radiation (GaAlAs) set at predetermined parameters were performed at 12-h intervals. Non-irradiated cells served as a control group. Neither the MTT values nor the total protein levels of the irradiated group differed significantly from those of the control group (Mann-Whitney test; p > 0.05). On the other hand, the irradiated cells showed a decrease in ALP activity (Mann-Whitney test; p < 0.05). RT-PCR results demonstrated a trend to a specific reduction in gene expression after cell irradiation, though not significant statistically (Mann-Whitney test; p > 0.05). It may be concluded that, under the tested conditions, the LLLT parameters used in the present study did not influence cell metabolism, but reduced slightly the expression of some specific proteins.
Resumo:
The decomposition of organic hydroperoxides into peroxyl radicals is a potential source of singlet molecular oxygen [O(2) ((1)Delta(g))] in biological systems. This study shows that 5-(hydroperoxymethyl)uracil (5-HPMU), a thymine hydroperoxide within DNA, reacts with metal ions or HOCl, generating O(2) ((1)Delta(g)). Spectroscopic evidence for generation of O(2) ((1)Delta(g)) was obtained by measuring (i) the bimolecular decay, (ii) the monomolecular decay, and (iii) the observation of D(2)O enhancement of O(2) ((1)Delta(g)) production and the quenching effect of NaN(3). Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated by the direct characterization of the near-infrared light emission. For the sake of comparison, O(2) ((1)Delta(g)) derived from the H(2)O(2)/HOCl system and from the thermolysis of the N,N`-di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide endoperoxide was also monitored. More evidence of O(2) ((1)Delta(g)) generation was obtained by chemical trapping of O(2) ((1)Delta(g)) with anthracene-9,10-divinylsulfonate (AVS) and detection of the specific AVS endoperoxide by HPLC/MS/MS. The detection by HPLC/MS of 5-(hydroxymethyl)uracil and 5-formyluracil, two thymine oxidation products generated from the reaction of 5-HPMU and Ce(4+) ions, supports the Russell mechanism. These photoemission properties and chemical trapping clearly demonstrate that the decomposition of 5-HPMU generates O(2) ((1)Delta(g)) by the Russell mechanism and point to the involvement of O(2) ((1)Delta(g)) in thymidine hydroperoxide cytotoxicity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Ethylene glycol dimethacrylate (EGDMA) and/or triethylene glycol dimethacrylate (TEGDMA) oligomers formation was catalyzed in aqueous medium by horseradish peroxidase (HRP) in the presence of H(2)O(2) at room temperature. EGDMA and/or TEGDMA oligomers were characterized by means of gel permeation chromatography, infrared vibrational spectroscopy and (1)H NMR spectroscopy. Self-assembling of oligomers led to right-angled crystalline particles, as evidenced by scanning electron microscopy and differential scanning calorimetry. EGDMA, TEGDMA and EGDMA-co-TEGDMA oligomers synthesized in the presence of HRP-H(2)O(2) system presented pendant vinyl groups along the chains. good solubility in chloroform, and well-defined melting point. These features evidenced few cross-linking or cyclization and revealed that the catalytic properties of HRP led to oligomeric materials with new characteristics. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present study is focused on developing a nanoparticle carrier for the photosensitizer protoporphyrin IX for use in photodynamic therapy. The entrapment of protoporphyrin IX (Pp IX) in silica spheres was achieved by modification of Pp IX molecules with an organosilane reagent. The immobilized drug preserved its optical properties and the capacity to generate singlet oxygen, which was detected by a direct method from its characteristic phosphorescence decay curve at near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen when a suspension of Pp IX-loaded particles in acetonitrile was excited at 532 nm was determined as 52 mu s, which is in good agreement with the value determined for methylene blue in acetonitrile solution under the same conditions. The Pp IX-loaded silica particles have an efficiency of singlet oxygen generation (eta Delta) higher than the quantum yield of free porphyrins. This high efficiency of singlet oxygen generation was attributed to changes on the monomer-dimer equilibrium after photosentisizer immobilization.
Resumo:
Singlet oxygen ((1)O(2)) generation in the reaction centers (RCs) of Rhodobacter sphaeroides wild type was characterized by luminescent emission in the near infrared region (time resolved transients and emission spectra) and quantified to have quantum yield of 0.03 +/- 0.005. (1)O(2) emission was measured as a function of temperature, ascorbate, urea and potassium ferricyanide concentrations and as a function of incubation time in H(2)O: D(2)O mixtures. (1)O(2) was shown to be affected by the RC dynamics and to originate from the reaction of molecular oxygen with two sources of triplets: photoactive dimer formed by singlet-triplet mixing and bacteriopheophytin formed by direct photoexcitation and intersystem crossing.
Resumo:
Akaganeite is a very rare iron oxyhydroxide in nature. It can be obtained by many synthetic routes, but thermohydrolysis is the most common method reported in the literature. In this work, akaganeite-like materials were prepared through the thermohydrolysis of FeCl(3)center dot 6H(2)O in water and suspensions containing clay minerals. X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) data show that the clays determine the crystal phase and size of the iron oxyhydroxide crystals. According to XRD and FTIR data, beta-FeO(OH) (akaganeite) is the main metal oxyhydroxide phase. Considering the small basal spacing (d(0 0 1)) displacement observed when comparing the XRD patterns of pristine clays with the composites containing beta-FeO(OH), the iron oxyhydroxide should be mostly located on the basal and edge surfaces of the clay minerals. UV-Vis electronic absorption spectra indicate that the preferred phase of the iron oxyhydroxide is determined by the nature of the clay minerals. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
CoFe(2)O(4) nanoparticles were obtained by the co-precipitation method. They were further modified by the adsorption of ricinoleic acid (RA). The non-modified and modified CoFe(2)O(4)/RA nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman, and Fourier transform infrared (FTIR) spectroscopy. The modified particles present a mean diameter < 20 nm. The adsorption of RA on the CoFe(2)O(4) surface is characterized by the IR absorptions of the RA while in the Raman spectrum the predominant signals are those from the CoFe(2)O(4). The cis-polyisoprene (PI) composite was prepared by dissolving PI in cyclohexane followed by the addition of a magnetic fluid based on CoFe(2)O(4)/RA nanoparticles dispersed in cyclohexane. After solvent evaporation a magnetic composite was obtained and characterized by AFM, Raman, and FTIR measurements. AFM images show uniformly CoFe(2)O(4)/RA particles distributed in the PI matrix. Raman spectra obtained for the composites reveal the characteristic Raman peaks of PI and CoFe(2)O(4) nanoparticles.
Resumo:
We have investigated the polyoxides HOOH, HOOOH, HOOOOH, and HOOO employing the CCSD(T) methodology, and the correlation consistent basis sets. For all molecules, we have computed fundamental vibrational frequencies, structural parameters, rotational constants, and rotation-vibration corrections. For HOOOH, we have obtained a good agreement between our results and microwave and infrared spectra measurements, although for the symmetric OO stretch some important differences were found. Heats of formation were computed using atomization energies, and our recommendation is as follows: Delta H degrees(f,298)(HOOOH) = -21.50 kcal/mol and Delta H degrees(f,298)(HOOOOH) = -10.61 kcal/mol. In the case of HOOO, to estimate the heat of formation, we have constructed three isodesmic reactions to cancel high order correlation effects. The results obtained confirmed that the latter effects are very important for HOOO. The new Delta H degrees(f,298)(HOOO) obtained is 5.5 kcal/mol. We have also calculated the zero-point energies of DO and DOOO to correct the experimental lower limit determined for the Delta H degrees(f,298)(HOOO). The Delta(Delta ZPE) decreases the binding energy of HOOO by 0.56 kcal/mol. Employing the latter value, the new experimental lower limit for Delta H degrees(f,298)(HOOO) is 3.07 kcal/mol, just 2.4 kcal/mol lower than our determination. We expect that the fundamental vibrational frequencies and rotational constants determined for HOOOOH and DOOOOD contribute to its identification in the gas phase. The vibrational spectrum of HOOOOH shows some overlapping with that of HOOOH thus indicating that one may encounter some difficulties in its characterization. We discuss the consequences of the thermochemical properties determined in this work, and suggest that the amount of HOOO present in the atmosphere is smaller than that proposed recently in this journal (J. Phys. Chem A 2007, 111, 4727).
Resumo:
We have analysed the effect of spin contamination in the wavefunction of HOOO. At least, two solutions can be found for the HF wavefunction. One, lower in energy, presents a high spin contamination and gives qualitatively incorrect structural parameters. On the other hand, the less contaminated HF reference gives structural parameters that are in better agreement with experiment, and positive spin densities on all atoms. Some of the problems described during previous investigations of HOOO can now be traced to problems in the HF reference. For the first time we report a CCSD(T) estimation of the structure of HOOO cis employing a HF reference with small spin contamination. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work presents a FT-Raman study (lambda(0) = 1064 nm) of naturally occurring polyester poly[(R)-3-hydroxybutyrate] (PHB) and its copolymer poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) with 5,8 and 12 mol % of HV (hydroxyvalerate). The FT-Raman spectra of films indicate that full width at half height of the band centered at 1725 cm(-1) and relative intensity of bands at 1443 and 1458 cm(-1) can be use to estimate the crystalline degree in film samples. The similarity between Raman spectra of molten PHB and PHBV and theirs CDCl(3) solutions suggested that molten polymers present similar conformation than polymers in solution. Raman data of these samples showed that bands at 1220, 1402, 1725, 2998 and 3009 cm(-1) are due to crystalline helical structure and the bands at 1453, 1740, 2881, 2938 and 2990 cm(-1) are originated from disordered domains. It is shown that composition of PHBV samples can be estimated by analyzing the ratio of the intensity of the bands at 2938 cm(-1) (nu C-H) and 1740 cm(-1) (nu C=O) in the spectra of solutions and of bands at 1354 (wCH(2)) and 1740 cm(-1) (nu C=O) in spectra of molten polymers. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The ethanol oxidation reaction (EOR) was investigated using PtSnCe/C electrocatalysts in different mass ratios (72:23:5, 68:22:10 and 64:21:15) that were prepared by the polymeric precursor method. Transmission electron microscopy (TEM) showed that the particles ranged in size from approximately 2 to 5 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn and Ce into the Pt crystalline network with the formation of an alloy between Pt, Sn and/or Ce. Among the PtSnCe catalysts investigated, the 68:22:10 composition showed the highest activity toward ethanol oxidation, and the current time curves obtained in the presence of ethanol in acidic media showed a current density 50% higher than that observed for commercial PtSn/C (E-Tek). During the experiments performed on single direct ethanol fuel cells, the power density for the PtSnCe/C 68:22:10 anode was nearly 40% higher than the one obtained using the commercial catalyst. Data from Fourier transform infrared (FTIR) spectroscopy showed that the observed behavior for ethanol oxidation may be explained in terms of a double mechanism. The presence of Sn and Ce seems to favor CO oxidation, since they produce an oxygen-containing species to oxidize acetaldehyde to acetic acid. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical behaviour of multi-walled carbon nanotubes was compared with that of glassy carbon, and the differences were investigated by cyclic voltammetry and electrochemical impedance spectroscopy before and after acid pre-treatment. The electrochemical techniques showed that acid functionalisation significantly improves the electrocatalytic properties of carbon nanotubes. These electrocatalytic properties enhance the analytical signal, shift the oxidation peak potential to a less positive value, and the charge-transfers rate increase of both dopamine and K(4)[Fe(CN)(6)]. The functionalisation step and the resulting appearance of edge planes covered with different chemical groups were confirmed by FTIR measurements. Carbon nanotubes after acid pre-treatment are a potentially powerful analytical tool for sensor development. (C) 2010 Elsevier B.V. All rights reserved.