132 resultados para immunoglobulin receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors with the sensitivity of alcohol`s effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared with alcohol non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin [5-hydroxytryptamine (5-HT)] system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5-HT(3), in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT(1B) receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT(1B) mRNA was elevated when compared with ANA mice. In the hypothalamus, AHA mice also showed increased transcripts for 5-HT(2A) receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in mice which showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Natural killer (NK) cells bridge the interface between innate and adaptive immunity and are implicated in the control of herpes simplex virus 2 (HSV-2) infection. In subjects infected with human immunodeficiency virus 1 (HIV-1), the critical impact of the innate immune response on disease progression has recently come into focus. Higher numbers of NK cells are associated with lower HIV-1 plasma viraemia. Individuals with the compound genotype of killer cell immunoglobulin-like receptor (KIR) 3DS1 and human leucocyte antigen (HLA)-Bw4-80I, or who have alleles of KIR3DL1 that encode proteins highly expressed on the NK cell surface, have a significant delay in disease progression. We studied the effect of HSV-2 co-infection in HIV-1-infected subjects, and show that HSV-2 co-infection results in a pan-lymphocytosis, with elevated absolute numbers of CD4+ and CD8+ T cells, and NK cells. The NK cells in HSV-2 co-infected subjects functioned more efficiently, with an increase in degranulation after in vitro stimulation. The number of NK cells expressing the activating receptors NKp30 and NKp46, and expressing KIR3DL1 or KIR3DS1, was inversely correlated with HIV-1 plasma viral load in subjects mono-infected with HIV-1, but not in subjects co-infected with HSV-2. This suggests that HSV-2 infection mediates changes within the NK cell population that may affect immunity in HIV-1 infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim: Some studies have identified an association of kidney stone formation with vitamin D receptor (VDR) or calcium-sensing receptor (CaSR) polymorphisms. We aimed to evaluate the association between these polymorphisms with urinary calcium excretion (uCa) in calcium-stone-forming patients. Methods: VDR polymorphism, detected by BsmI digestion, and 3 CaSR polymorphisms (G/T at codon 986, G/A at codon 990 and C/G at codon 1011), detected by direct sequencing, were evaluated in 100 hypercalciuric (HCa) and 101 normocalciuric (NCa) calcium-stone-forming patients. Results: The total allelic frequency of VDR polymorphism was: 16% BB, 49% Bb and 35% bb. The prevalence of bb genotype was significantly higher in the HCa when compared to the NCa group (43 vs. 27%). With respect to CaSR polymorphisms, 986S, 990G and 1011E variant alleles were detected, respectively, in 5, 4 and 3% of the whole sample and 5 CaSR haplotypes were identified: 94% ARQ (wildtype), 3% SRQ, 1.5% AGQ, 1.0% ARE and 0.5% AGE. No statistical differences have been observed between NCa and HCa with respect to these CaSR haplotypes. Conclusions: The present study suggested that bb homozygous for VDR polymorphism was overrepresented in hypercalciuric stone formers. Urinary calcium excretion was not associated with CaSR polymorphism in the present sample. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll-like receptors (TLR) are membrane proteins that recognize conserved molecules derived from bacterial, virus, fungal or host tissues. Activation of TLRs causes the production of cytokines that mediate inflammatory responses and drive T helper (Th) 1 and 2 cell development. As an exaggerated Th1 immune response is supposed to be involved in pathogenesis of Recurrent Aphthous Ulceration (RAU), we suggest that RAU patients may have an imbalance in TLR pathways. To study the function of TLR activation ex vivo, peripheral blood mononuclear cells (PBMCs) from RAU patients (n = 17) and controls (n = 17) were exposed to TLR2 [lipoteichoic acid (LTA), heat-killed Listeria monocytogenes (HKLM) and PamC3CSK4], TLR3 [Poly(I:C)], TLR4 [lipopolysaccharide (LPS)], TLR5 (flagellin) and TLR7 (imiquimod) ligands, and the time course of supernatant tumor necrosis factor-alpha (TNF-alpha) levels was quantified by enzyme-linked immunosorbent assay. In addition, serological and salivary TNF-alpha and soluble CD14 levels were quantified. The TNF-alpha produced by PBMCs in contact with each TLR ligand and autologous serum or saliva at the same time was also investigated. The data were analyzed by statistical multivariate tests. The control group had a higher response to LTA, whereas RAU had a higher response to HKLM. LTA and LPS interfered with the salivary stimulation of the RAU PBMC and HKLM with the stimulation of the control. Autologous serum was capable of inhibiting TLR2 responsiveness to LTA and enhancing LPS stimulation. Salivary and serological levels of sCD14 and TNF-alpha were not significantly different. Recurrent Aphthous Ulceration patients have an anomalous activity of the TLR2 pathway that probably influences the stimulation of an abnormal Th1 immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic peptide receptor (GIPR) and LHCGR are G-protein-coupled receptors with a wide tissue expression pattern. Aberrant expression of these receptors has rarely been demonstrated in adult sporadic adrenocortical tumors with a lack of data on pediatric tumors. We quantified the GIPR and LHCGR expression in a large cohort of 55 patients (25 children and 30 adults) with functioning and non-functioning sporadic adrenocortical tumors. Thirty-eight tumors were classified as adenomas whereas 17 were carcinomas. GIPR, and LHCGR expression were analyzed by real-time PCR and normal human pancreatic and testicular tissue samples were used as positive controls. Mean expression values were determined by fold increase in comparison with a normal adrenal pool. GIPR mRNA levels were significantly higher in adrenocortical carcinomas than in adenomas from both pediatric and adult groups. LHCGR expression was similar in both carcinomas and adenomas from the pediatric group but significantly lower in carcinomas than in adenomas from the adult group (median 0.06 and 2.3 respectively, P<0.001). GIPR was detected by immunohistochemistry in both pediatric and adult tumors. Staining and real-time PCR results correlated positively only when GIPR in RN A levels were increased at least two-fold in comparison with normal adrenal expression levels. In Conclusion, GIPR overexpression was observed in pediatric and adult adrenocortical tumors and very low levels of LHCGR expression were found in all adult adrenocortical carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin (IL)-1 alpha and beta are important modulators of many functions of corneal epithelial and stromal cells that occur following injury to the cornea, including the influx of bone marrow-derived inflammatory cells into the stroma attracted by chemokines released from the stroma and epithelium. In this study, we examined the effect of topical soluble IL-1 receptor antagonist on bone marrow-derived cell influx following corneal epithelial scrape injury in a mouse model. C57BL/6 mice underwent corneal epithelial scrape followed by application of IL-1 receptor antagonist (Amgen, Thousand Oaks, CA) at a concentration of 20 mg/ml or vehicle for 24 h prior to immunocytochemical detection of marker CD11b-positive cells into the stroma. In two experiments, topical IL-1 receptor antagonist had a marked effect in blocking cell influx. For example, in experiment 1, topical IL-1 receptor antagonist markedly reduced detectible CD11b-positive cells into the corneal stroma at 24 It after epithelial injury compared with the vehicle control (3.5 +/- 0.5 (standard error of the mean) cells/400x field and 13.9 +/- 1.2 cells/400x field, respectively, p < 0.01). A second experiment with a different observer performing cell counting had the same result. Thus, the data demonstrate conclusively that topical IL-1 receptor antagonist markedly down-regulates CD-11b-positive monocytic cell appearance in the corneal stroma. Topical IL-1 receptor antagonist could be an effective adjuvant for clinical treatment of corneal conditions in which unwanted inflammation has a role in the pathophysiology of the disorder. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A limited number of mutations in the GH secretagogue receptor gene (GHSR) have been described in patients with short stature. Objective: To analyze GHSR in idiopathic short stature (ISS) children including a subgroup of constitutional delay of growth and puberty (CDGP) patients. Subjects and methods: The GHSR coding region was directly sequenced in 96 independent patients with ISS, 31 of them with CDGP, in 150 adults, and in 197 children with normal stature. The pharmacological consequences of GHSR non-synonymous variations were established using in vitro cell-based assays. Results: Five different heterozygous point variations in GHSR were identified (c.-6 G>C, c.251G>T (p.Ser84Ile), c.505G>A (p.Ala169Thr), c.545 T>C (p.Val182Ala), and c.1072G>A (p.Ala358Thr)), all in patients with CDGP. Neither these allelic variants nor any other mutations were found in 694 alleles from controls. Functional studies revealed that two of these variations (p.Ser84Ile and p. Val182Ala) result in a decrease in basal activity that was in part explained by a reduction in cell surface expression. The p.Ser84Ile mutation was also associated with a defect in ghrelin potency. These mutations were identified in two female patients with CDGP (at the age of 13 years, their height SDS were -2.4 and -2.3). Both patients had normal progression of puberty and reached normal adult height (height SDS of -0.7 and -1.4) without treatment. Conclusion: This is the first report of GHSR mutations in patients with CDGP. Our data raise the intriguing possibility that abnormalities in ghrelin receptor function may influence the phenotype of individuals with CDGP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ATP acts on cellular membranes by interacting with P2X (ionotropic) and P2Y (metabotropic) receptors. Seven homomeric P2X receptors (P2X(1)-P2X(7)) and seven heteromeric receptors (P2X(1/2), P2X(1/4), P2X(1/5), P2X(2/3), P2X(2/6), P2X(4/6), P2X(4/7)) have been described. ATP treatment of Leydig cells leads to an increase in [Ca(2+)](i) and testosterone secretion, supporting the hypothesis that Ca(2+) signaling through purinergic receptors contributes to the process of testosterone secretion in these cells. Mouse Leydig cells have P2X receptors with a pharmacological and biophysical profile resembling P2X(2). In this work, we describe the presence of several P2X receptor subunits in mouse Leydig cells. Western blot experiments showed the presence of P2X(2), P2X(4), P2X(6), and P2X(7) subunits. These results were confirmed by immunofluorescence. Functional results support the hypothesis that heteromeric receptors are present in these cells since 0.5 mu M ivermectin induced an increase (131.2 +/- 5.9%) and 3 mu M ivermectin a decrease (64.2 +/- 4.8%) in the whole-cell currents evoked by ATP. These results indicate the presence of functional P2X(4) subunits. P2X(7) receptors were also present, but they were non-functional under the present conditions because dye uptake experiments with Lucifer yellow and ethidium bromide were negative. We conclude that a heteromeric channel, possibly P2X(2/4/6), is present in Leydig cells, but with an electrophysiological and pharmacological phenotype characteristic of the P2X(2) subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Strongyloides stercoralis is an intestinal nematode capable of chronic, persistent infection and hyperinfection of the host; this can lead to dissemination, mainly in immunosuppressive states, in which the infection can become severe and result in the death of the host. In this study, we investigated the immune response against Strongyloides venezuelensis infection in major histocompatibility complex (MHC) class I or class II deficient mice. We found that MHC II(-/-) animals were more susceptible to S. venezuelensis infection as a result of the presence of an elevated number of eggs in the faeces and a delay in the elimination of adult worms compared with wild-type (WT) and MHC I(-/-) mice. Histopathological analysis revealed that MHC II(-/-) mice had a mild inflammatory infiltration in the small intestine with a reduction in tissue eosinophilia. These mice also presented a significantly lower frequency of eosinophils and mononuclear cells in the blood, together with reduced T helper type 2 (Th2) cytokines in small intestine homogenates and sera compared with WT and MHC I(-/-) animals. Additionally, levels of parasite-specific immunoglobulin M (IgM), IgA, IgE, total IgG and IgG1 were also significantly reduced in the sera of MHC II(-/-) infected mice, while a non-significant increase in the level of IgG2a was found in comparison to WT or MHC I(-/-) infected mice. Together, these data demonstrate that expression of MHC class II but not class I molecules is required to induce a predominantly Th2 response and to achieve efficient control of S. venezuelensis infection in mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2-/- mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T gondii replication in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as Fc epsilon RI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased Fc epsilon RI-induced degranulation, nuclear factor for T cell activation and NF kappa B activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene amplification occurs in Bradysia hygida salivary glands, at the end of the fourth larval instar. The hormone 20-hydroxyecdysone (20E) triggers this process, which results in DNA puff formation. Amplified genes are activated in two distinct groups. The activity of the first group is dependent on high levels of 20E, while the second group needs low hormone levels. Consequently, the salivary glands of B. hygida constitute an interesting biological model to study how 20E, and its receptors, affect gene amplification and activity. We produced polyclonal antibodies against B. hygida EcR (BhEcR). In western blots a polypeptide of about 66 kDa was detected in salivary gland extracts. The antibodies were also used for indirect immune-localization of BhEcR in polytene chromosomes. RNA-polymerase II was also immune-detected. We did not detect the receptor in chromosome C where the first and second groups of DNA puffs form during DNA puff anlage formation, but it was present during puff expansion. During the active phase of both groups of DNA puffs, RNA polymerase II co-localized with BhEcR. After puff regression, these antigens were not detected. Apparently, EcR plays a direct role in the transcription of amplified genes, but its role in gene amplification remains enigmatic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth hormone (GH) influences bone mass maintenance. However, the consequences of lifetime isolated GH deficiency (IGHD) on bone are not well established. We assessed the bone status and the effect of 6 months of GH replacement in GH-naive adults with IGHD due to a homozygous mutation of the GH-releasing hormone (GHRH)-receptor gene (GHRHR). We studied 20 individuals (10 men) with IGHD at baseline, after 6 months of depot GH treatment, and 6 and 12 months after discontinuation of GH. Quantitative ultrasound (QUS) of the heel was performed and serum osteocalcin (OC) and C-terminal cross-linking telopeptide of type I collagen (ICTP) were measured. QUS was also performed at baseline and 12 months later in a group of 20 normal control individuals (CO), who did not receive GH treatment. At baseline, the IGHD group had a lower T-score on QUS than CO (-1.15 +/- 0.9 vs. -0.07 +/- 0.9, P < 0.001). GH treatment improved this parameter, with improvement persisting for 12 months post-treatment (T-score for IGHD = -0.59 +/- 0.9, P < 0.05). GH also caused an increase in serum OC (baseline vs. pGH, P < 0.001) and ICTP (baseline vs. pGH, P < 0.01). The increase in OC was more marked during treatment and its reduction was slower after GH discontinuation than in ICTP. These data suggest that lifetime severe IGHD is associated with significant reduction in QUS parameters, which are partially reversed by short-term depot GH treatment. The treatment induces a biochemical pattern of bone anabolism that persists for at least 6 months after treatment discontinuation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study in urban Brazil we examine, as a predictor of depressive symptoms, the interaction between a single nucleotide polymorphism in the 2A receptor in the serotonin system (-1438G/A) and cultural consonance in family life, a measure of the degree to which an individual perceives her family as corresponding to a widely shared cultural model of the prototypical family. A community sample of 144 adults was followed over a 2-year-period. Cultural consonance in family life was assessed by linking individuals` perceptions of their own families with a shared cultural model of the family derived from cultural consensus analysis. The -1438G/A polymorphism in the 2A serotonin receptor was genotyped using a standard protocol for DNA extracted from leukocytes. Covariates included age, sex, socioeconomic status, and stressful life events. Cultural consonance in family life was prospectively associated with depressive symptoms. In addition, the interaction between genotype and cultural consonance in family life was significant. For individuals with the A/A variant of the -1438G/A polymorphism of the 2A receptor gene, the effect of cultural consonance in family life on depressive symptoms over a 2-year-period was larger (beta = -0.533, P < 0.01) than those effects for individuals with either the G/A (beta = -0.280, P < 0.10) or G/G (beta = -0.272, P < 0.05) variants. These results are consistent with a process in which genotype moderates the effects of culturally meaningful social experience on depressive symptoms. Am. J. Hum. Biol. 21:91-97, 2009. (C) 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Physiological activation of the prokineticin pathway has a critical role in olfactory bulb morphogenesis and GnRH secretion in mice. Objective: To investigate PROK2 and PROKR2 mutations in patients with hypogonadotropic hypogonadism (HH) associated or not with olfactory abnormalities. Design: We studied 107 Brazilian patients with HH (63 with Kallmann syndrome and 44 with normosmic HH) and 100 control individuals. The coding regions of PROK2 and PROKR2 were amplified by PCR followed by direct automatic sequencing. Results: In PROK2, two known frameshift mutations were identified. Two brothers with Kallmann syndrome harbored the homozygous p. G100fsX121 mutation, whereas one male with normosmic HH harbored the heterozygous p. I55fsX56 mutation. In PROKR2, four distinct mutations (p. R80C, p. Y140X, p. L173R, and p. R268C) were identified in five patients with Kallmann syndrome and in one patient with normosmic HH. These mutations were not found in the control group. The p. R80C, p. L173R, and p. R268C missense mutations were identified in the heterozygous state in the HH patients and in their asymptomatic first-degree relatives. In addition, nomutations of FGFR1, KAL1, GnRHR, KiSS-1, or GPR54 were identified in these patients. Notably, the new nonsense mutation (p. Y140X) was identified in the homozygous state in an anosmic boy with micropenis, bilateral cryptorchidism, and high-arched palate. His asymptomatic parents were heterozygous for this severe defect. Conclusion: We expanded the repertoire of PROK2 and PROKR2 mutations in patients with HH. In addition, we show that PROKR2 haploinsufficiency is not sufficient to cause Kallmann syndrome or normosmic HH, whereas homozygous loss-of-function mutations either in PROKR2 or PROK2 are sufficient to cause disease phenotype, in accordance with the Prokr2 and Prok2 knockout mouse models.