93 resultados para COLLOIDAL SEMICONDUCTOR NANOCRYSTALS
Resumo:
A multilayer organic film containing poly(acrylic acid) and chitosan was fabricated on a metallic support by means of the layer-by-layer technique. This film was used as a template for calcium carbonate crystallization and presents two possible binding sites where the nucleation may be initiated, either calcium ions acting as counterions of the polyelectrolyte or those trapped in the template gel network formed by the polyelectrolyte chains. Calcium carbonate formation was carried out by carbon dioxide diffusion, where CO, was generated from ammonium carbonate decomposition. The CaCO3 nanocrystals obtained, formed a dense, homogeneous, and continuous film. Vaterite and calcite CaCO3 crystalline forms were detected. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
A modification of the Pechini method was applied to obtain luminescent rare earth orthophosphates. The developed synthetic route is based on the ability of the tripolyphosphate anion (P3O105-) to act both as a complexing agent and as an orthophosphate precursor. Heating of aqueous solutions containing RE3+, Eu3+, P3O105-, citric acid, and ethylene glycol led to polymeric resins. The ignition of these resins at different temperatures yielded luminescent orthophosphates. The produced nanosized phosphors (YPO4:Eu3+, (Y,Gd)PO4:Eu3+, and LaPO4:Eu3+) were analyzed by infrared and luminescence spectroscopies, X-ray diffractometry, and scanning electron microscopy.
Resumo:
Luminescent Eu(3+) and Er(3+) doped SnO(2) powders have been prepared by Sn(4+) hydrolysis followed by a controlled growth reaction using a particle`s surface modifier in order to avoid particles aggregation. The powders so obtained doped with up to 2 mol% rare earth ions are fully redispersable in water at pH > 8 and present the cassiterite structure. Particles size range from 3 to 10 nm as determined by Photon Correlation Spectroscopy. Rare earth ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn(4+), for doping concentration smaller than 0.05 mol%. For higher concentration they are also located at the particles surface. The presence of Eu(3+) ions at the surface of the particles hinder their growth and has therefore allowed the preparation of new materials consisting of water redispersable powders coated with Eu(3+)-beta dike-tonate complexes. Enhanced UV excited photoluminescence was observed in water. SnO(2) single layers with thickness up to 200 nm and multilayer coatings were spin coated on borosilicate glass substrates from the colloidal suspensions. Waveguiding properties were evaluated by the prism coupling technique. For a 0.3 mu m planar waveguide single propagating mode was observed with attenuation coefficient of 3.5 dB/cm at 632.8 nm.
Resumo:
A surfactant-mediated solution route for the obtainment of nanosized rare-earth orthophosphates of different compositions (LaPO(4):Eu(3+), (Y,Gd)PO(4):Eu(3+),LaPO(4):Tm(3+), YPO(4):Tm(3+), and YbPO(4):Er(3+)) is presented, and the implications of the morphology control on the solids properties are discussed. The solids are prepared in water-in-heptane microemulsions, using cetyltrimethylammonium bromide and 1-butanol as the surfactant and cosurfactant; the alteration of the starting microemulsion composition allows the obtainment of similar to 30 nm thick nanorods with variable length. The morphology and the structure of the solids were evaluated through scanning electron microscopy and through powder X-ray diffractometry; dynamic light scattering and thermal analyses were also performed. The obtained materials were also characterized through vibrational (FTIR) and luminescence spectroscopy (emission/excitation, luminescence lifetimes, chromaticity, and quantum efficiency), where the red, blue, and upconversion emissions of the prepared phosphors were evaluated.
Resumo:
This article reports a study on the preparation, densification process, and structural and optical properties of SiO(2)-Ta(2)O(5) nanocomposite films obtained by the sol-gel process. The films were doped with Er(3+) and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 degrees C. The onset of crystallization and devitrification, with the growth of Ta(2)O(5) nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er(3+)-doped nanocomposite annealed at 900 degrees C consists of Ta(2)O(5) nanoparticles, with sizes around 2 nm, dispersed in the SiO(2) amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the (4)I(13/2)->(4)I(15/2) transition of the Er(3+) ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the (4)I(13/2) levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Lipid microspheres (LM) are excellent drug delivery or vaccines adjuvant systems and are relatively stable. The aim of this work is to develop and characterize a system that is able to encapsulate and present antigenic membrane proteins from Leishmania amazonensis. Membrane proteins are important for vaccine`s formulation because these proteins come in contact with the host cell first, triggering the cell mediated immune response. This is a useful tool to avoid or inactivate the parasite invasion. The LM are constituted by soybean oil (SO), dipalmitoylphosphatidilcholine (DPPC), cholesterol and solubilized protein extract (SPE). The particles formed presented an average diameter of 200 run, low polydispersion and good stability for a period of 30 days, according to dynamic light scattering assays. Isopycnic density gradient centrifugation of LM-protein showed that proteins and lipids floated in the sucrose gradient (5-50%w/v) suggesting that the LM-protein preparation was homogeneous and that the proteins are interacting with the system. The results show that 85% of SPE proteins were encapsulated in the LM. Studies of cellular viability of murine peritoneal macrophages show that our system does not present cytotoxic effect for the macrophages and still stimulates their NO production (which makes its application as a vaccine adjuvant possible). LM-protein loaded with antigenic membrane proteins from L. amazonensis seems to be a promising vaccine system for immunization against leishmaniasis. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A new solution route for the obtainment of highly pure luminescent rare-earth orthophosphates in hydrothermal conditions was developed. By starting from soluble precursors (lanthanide tripolyphosphato complexes. i.e. with P(3)O(10)(5) as a complexing agent and as in orthophosphate source) and by applying surfactants in a water/toluene medium, the precipitations are confined to reverse micelle structures, thus yielding nanosized and homogeneous orthophosphates The method was employed to obtain lanthanide-activated lanthanum phosphates, which can be applied as red (LaPO(4):Eu(3+)), green (LaPO(4):Ce(3+), Tb(3+)) and blue (LaPO(4):Tm(3+)) phosphors The produced materials were analyzed by powder X-ray diffractometry, scanning electron microscopy, infrared spectroscopy and luminescence spectroscopy (emission, excitation, lifetimes and chromaticity coordinates) (C) 2009 Elsevier B V All rights reserved
Resumo:
The interactions between phosphorylcholine-substituted chitosans (PC-CH) and calf-thymus DNA (ct-DNA) were investigated focusing on the effects of the charge ratio, the pH, and phosphorylcholine content on the size and stability of the complexes using the ethidium bromide fluorescence assay, gel electrophoresis, dynamic light scattering. and fluorescence microscopy. The size and colloidal stability of deacetylated chitosan (CH/DNA) and PC-CH/DNA complexes were strongly dependent on phosphorylcholine content, charge ratios, and pH. The interaction strengths were evaluated from ethidium bromide fluorescence, and at N/P ratios higher than 5.0, no DNA release was observed in any synthesized PC-CH/DNA polyplexes by gel electrophoresis. The PC-CH/DNA polyplexes exhibited a higher resistance to aggregation compared to deacetylated chitosan (CH) at neutral pH. At low pH values highly charged chitosan and its phosphorylcholine derivatives had strong binding affinity with DNA, whereas at higher pH Values CH formed large aggregates and only C-CH derivatives were able to form small nanoparticles with hydrodynamic radii varying from 100 to 150 nm. Nanoparticles synthesized at low ionic strength with PC-CH derivatives containing moderate degrees of substitution (DS = 20% and 40%) remained stable for weeks. Photomicroscopies also confirmed that rhodamine-labeled PC(40)CH derivative nanoparticles presented higher colloidal stability than those synthesized using deacetylated chitosan. Accordingly, due to their improved physicochemical properties these phosphorylcholine-modified chitosans provide new perspectives for controlling the properties of polyplexes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Many peptides containing tryptophan have therapeutic uses and can be studied by their fluorescent properties. The biological activity of these peptides involves interactions with many cellular components and micelles can function as carriers inside organisms. We report results from the interaction of small peptides containing tryptophan with several microheterogeneous systems: sodium dodecyl sulphate (SDS) micelles; sodium dodecyl sulphate-poly(ethylene oxide) (SDS-PEO) aggregates; and neutral polymeric micelles. We observed that specific parameters, such as wavelength of maximum emission and fluorescence anisotropy, could be used to ascertain the occurrence of interactions. Affinity constants were determined from changes in the intensity of emission while structural modifications in rotameric conformations were verified from time-resolved measurements. Information about the location and diffusion of peptides in the microheterogeneous systems were obtained from tryptophan emission quenching experiments using N-alkylpyridinium ions. The results show the importance of electrostatic and hydrophobic effects, and of the ionization state of charged residues, in the presence of anionic and amphiphilic SDS in the microheterogeneous systems. Conformational stability of peptides is best preserved in the interaction with the neutral polymeric micelles. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The magnetic resonance imaging contrast agent, the so-called Endorem (TM) colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe(3)O(4) monodomain and it was observed that its oxidation to gamma-Fe(2)O(3) occurs at 253.1 degrees C. The Mossbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T(1), T(2), and T(2)* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermooptic coefficient partial derivative n/partial derivative T, thermal conductivity K, optical birefringence Delta n(0), nonlinear refractive index n(2), nonlinear absorption beta` and third-order nonlinear susceptibility vertical bar chi((3))vertical bar are also reported.
Resumo:
CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas.
Resumo:
Background & aims: There is scarce information about immune function and parenteral. fish oil (FO). The influence of a new parenteral. lipid emulsion (LE) containing fish oil (SMOF) was experimentally evaluated on neutrophils` chemotaxis and macrophages` phagocytosis. Methods: Adult mate Lewis rats (n = 40) were randomized into five groups; one non-surgical. control and four to receive parenteral LE or saline infusion through jugular vein catheterization: SMOF (mixture of 30% medium-chain triglycerides, 30% soybean, 25% olive and 15% fish oils); MCT/LCT (physical mixture of 50% medium-chain triglycerides and 50% soybean oil); MCT/LCT/FO (80% MCT/LCT supplemented with 20% FO) and SS (saline). In the 5th experimental day and after intravenous colloidal carbon injection, blood and tissue (liver, lung and spleen) samples were collected and immunological analyses were performed. Results: LE didn`t influence neutrophil chemotaxis. SMOF didn`t influence phagocytosis (p > 0.05) while MCT/LCT and MCT/LCT/FO LE increased the number of liver and lung resident macrophages that had engaged in phagocytosis compared with CO-NS and SS (p < 0.05). Only MCT/LCT/FO increased the number of spleen resident macrophages that had engaged in phagocytosis (p < 0.05). Conclusions: LE, independently of composition, had no influence on neutrophils` chemotaxis, but showed different effect on phagocytosis by macrophages. SMOF LE had neutral effect while fish oil LE enriched with MCT/LCT LE increased resident-macrophages` phagocytosis. (c) 2007 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
In this study, the photodynamic action of liposomes (LP) and nanocapsules (NC) containing Chloroaluminum phthalocyanine (CIAIPc), on the human melanoma cell (WM 1552C), was assessed. The light source was setup at 672 nm, which corresponds to the maximum absorption wavelength of the CIAIPc. Both colloidal carriers presented size in nanometric scale as well as negative zeta potential. The cellular damage was light dose dependent ranging from 30% of cell death at 70 mJ.cm(-2) to 90% of death at 700 mJ.cm(-2). However, the photocytotoxic effect of LP at 70 mJ.cm(-2) was slightly more efficient to induce cellular death than NC formulation. At 140 mJ.cm(-2), and 700 mJ.cm(-2) both nanocarriers were equally efficient to induce cellular damage. Therefore, in the present work, the maximum phototoxic effect was obtained with 700 mJ.cm(-2) of light dose, in combination with 0.29 mu g.mL(-1) of CIAIPc encapsulated into LP and NC. The cells were also positive to annexin V, after the PDT treatment with LP and NC, showing that one of the mechanisms of cellular death involved is apoptosis. In summary, the potential of LP and NC as a drug delivery system, in Photodynamic Therapy (PDT) against melanoma, has been confirmed using a lower concentration of the photosensitizer and lower light doses than that applied in current protocols. This is an innovative proposal to treat melanoma cell lines that until now have not received the benefit of the PDT protocol for treatment.
Resumo:
Radiotherapy produces both acute and delayed effects on mucosal tissues, disturbing their healing. This report shows a successful treatment with laser phototherapy (LPT) on a delayed wound healing in oral mucosa previously submitted to radiotherapy with a follow up of 3 years. A 47-year-old patient treated 6 months earlier for tongue squamous cell carcinoma by surgery and radiotherapy presented with a mass in the operated area. Biopsy showed chronic inflammatory infiltrate around a residual polyglactin suture. After 2 months there was a painful mucosal dehiscence on the biopsy site. LPT was performed using a semiconductor laser with 660-nm wavelength (InGaAlP) and spot size of 0.04 cm(2). The parameters applied were 40 mW, 4 Jcm(2)/point, 0.16 J/point, 2.4 J/session. The irradiation was performed punctually, through contact mode in 15 points (4 seconds/point), on top of and around the lesion, during ten sessions. The wound healed completely after ten sessions. This treatment proved to be conservative and effective, inducing healing of a chronic wound in a tissue previously submitted to radiotherapy.
Resumo:
Objective: Although the general mechanisms of dentinogenesis are understood, several aspects regarding tertiary dentine formation still deserve investigation, especially regarding the presence and distribution of some noncollagenous matrix proteins. As dentine matrix protein 1 (DMP 1) is present in primary dentine, it is possible that this protein may also be present in the dentine matrix secreted after injury, but there are no immunocytochemical studies attempting its detection in tertiary dentine. The aim of this study was to examine the ultrastructural immunolocalization of DMP 1 in the tertiary dentine after extrusion of the rat incisor. Study design: Upper incisors were extruded 3 mm and then repositioned into their sockets. After several periods, the incisors were fixed and processed for transmission electron microscopy and for immunocytochemistry for DMP 1. Results: Extrusion yielded both types of tertiary dentine, which varied in aspect and related cells. DMP 1 was found in the mineralized matrix of all types of dentine, presenting high affinity for collagen, but rare colloidal gold particles over predentine. DMP 1 was evident in the supranuclear region and inside the nucleus of some odontoblast-like cells. Conclusion: The observed association between DMP 1 and collagen seem to be essential for reactionary and reparative dentine formation. (C) 2010 Elsevier Ltd. All rights reserved.