90 resultados para Boosted regression trees
Resumo:
Regression models for the mean quality-adjusted survival time are specified from hazard functions of transitions between two states and the mean quality-adjusted survival time may be a complex function of covariates. We discuss a regression model for the mean quality-adjusted survival (QAS) time based on pseudo-observations, which has the advantage of directly modeling the effect of covariates in the QAS time. Both Monte Carlo Simulations and a real data set are studied. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
This paper generalizes the methodology of Cat and Brown [Cai, T., Brown, L.D., 1998. Wavelet shrinkage for nonequispaced samples. The Annals of Statistics 26, 1783-1799] for wavelet shrinkage for nonequispaced samples, but in the presence of correlated stationary Gaussian errors. If the true function is a member of a piecewise Holder class, it is shown that, even for long memory errors, the rate of convergence of the procedure is almost-minimax relative to the independent and identically distributed errors case. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Birnbaum-Saunders models have largely been applied in material fatigue studies and reliability analyses to relate the total time until failure with some type of cumulative damage. In many problems related to the medical field, such as chronic cardiac diseases and different types of cancer, a cumulative damage caused by several risk factors might cause some degradation that leads to a fatigue process. In these cases, BS models can be suitable for describing the propagation lifetime. However, since the cumulative damage is assumed to be normally distributed in the BS distribution, the parameter estimates from this model can be sensitive to outlying observations. In order to attenuate this influence, we present in this paper BS models, in which a Student-t distribution is assumed to explain the cumulative damage. In particular, we show that the maximum likelihood estimates of the Student-t log-BS models attribute smaller weights to outlying observations, which produce robust parameter estimates. Also, some inferential results are presented. In addition, based on local influence and deviance component and martingale-type residuals, a diagnostics analysis is derived. Finally, a motivating example from the medical field is analyzed using log-BS regression models. Since the parameter estimates appear to be very sensitive to outlying and influential observations, the Student-t log-BS regression model should attenuate such influences. The model checking methodologies developed in this paper are used to compare the fitted models.
Resumo:
We study the threshold theta bootstrap percolation model on the homogeneous tree with degree b + 1, 2 <= theta <= b, and initial density p. It is known that there exists a nontrivial critical value for p, which we call p(f), such that a) for p > p(f), the final bootstrapped configuration is fully occupied for almost every initial configuration, and b) if p < p(f) , then for almost every initial configuration, the final bootstrapped configuration has density of occupied vertices less than 1. In this paper, we establish the existence of a distinct critical value for p, p(c), such that 0 < p(c) < p(f), with the following properties: 1) if p <= p(c), then for almost every initial configuration there is no infinite cluster of occupied vertices in the final bootstrapped configuration; 2) if p > p(c), then for almost every initial configuration there are infinite clusters of occupied vertices in the final bootstrapped configuration. Moreover, we show that 3) for p < p(c), the distribution of the occupied cluster size in the final bootstrapped configuration has an exponential tail; 4) at p = p(c), the expected occupied cluster size in the final bootstrapped configuration is infinite; 5) the probability of percolation of occupied vertices in the final bootstrapped configuration is continuous on [0, p(f)] and analytic on (p(c), p(f) ), admitting an analytic continuation from the right at p (c) and, only in the case theta = b, also from the left at p(f).
Resumo:
We analyze data obtained from a study designed to evaluate training effects on the performance of certain motor activities of Parkinson`s disease patients. Maximum likelihood methods were used to fit beta-binomial/Poisson regression models tailored to evaluate the effects of training on the numbers of attempted and successful specified manual movements in 1 min periods, controlling for disease stage and use of the preferred hand. We extend models previously considered by other authors in univariate settings to account for the repeated measures nature of the data. The results suggest that the expected number of attempts and successes increase with training, except for patients with advanced stages of the disease using the non-preferred hand. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
We consider the issue of assessing influence of observations in the class of beta regression models, which is useful for modelling random variables that assume values in the standard unit interval and are affected by independent variables. We propose a Cook-like distance and also measures of local influence under different perturbation schemes. Applications using real data are presented. (c) 2008 Elsevier B.V.. All rights reserved.
Resumo:
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We derive a simple matrix formula for second-order covariances of maximum-likelihood estimators in this class of models. The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors. Some simulation results show that the second-order covariances can be quite pronounced in small to moderate sample sizes. We also present empirical applications.
Resumo:
We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.
Resumo:
The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The main purpose of this work is to study the behaviour of Skovgaard`s [Skovgaard, I.M., 2001. Likelihood asymptotics. Scandinavian journal of Statistics 28, 3-32] adjusted likelihood ratio statistic in testing simple hypothesis in a new class of regression models proposed here. The proposed class of regression models considers Dirichlet distributed observations, and the parameters that index the Dirichlet distributions are related to covariates and unknown regression coefficients. This class is useful for modelling data consisting of multivariate positive observations summing to one and generalizes the beta regression model described in Vasconcellos and Cribari-Neto [Vasconcellos, K.L.P., Cribari-Neto, F., 2005. Improved maximum likelihood estimation in a new class of beta regression models. Brazilian journal of Probability and Statistics 19,13-31]. We show that, for our model, Skovgaard`s adjusted likelihood ratio statistics have a simple compact form that can be easily implemented in standard statistical software. The adjusted statistic is approximately chi-squared distributed with a high degree of accuracy. Some numerical simulations show that the modified test is more reliable in finite samples than the usual likelihood ratio procedure. An empirical application is also presented and discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We introduce, for the first time, a new class of Birnbaum-Saunders nonlinear regression models potentially useful in lifetime data analysis. The class generalizes the regression model described by Rieck and Nedelman [Rieck, J.R., Nedelman, J.R., 1991. A log-linear model for the Birnbaum-Saunders distribution. Technometrics 33, 51-60]. We discuss maximum-likelihood estimation for the parameters of the model, and derive closed-form expressions for the second-order biases of these estimates. Our formulae are easily computed as ordinary linear regressions and are then used to define bias corrected maximum-likelihood estimates. Some simulation results show that the bias correction scheme yields nearly unbiased estimates without increasing the mean squared errors. Two empirical applications are analysed and discussed. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper derives the second-order biases Of maximum likelihood estimates from a multivariate normal model where the mean vector and the covariance matrix have parameters in common. We show that the second order bias can always be obtained by means of ordinary weighted least-squares regressions. We conduct simulation studies which indicate that the bias correction scheme yields nearly unbiased estimators. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We construct some examples using trees. Some of them are consistent counterexamples for the discrete reflection of certain topological properties. All the properties dealt with here were already known to be non-discretely reflexive if we assume CH and we show that the same is true assuming the existence of a Suslin tree. In some cases we actually get some ZFC results. We construct also, using a Suslin tree, a compact space that is pseudo-radial but it is not discretely generated. With a similar construction, but using an Aronszajn tree, we present a ZFC space that is first countable, omega-bounded but is not strongly w-bounded, answering a question of Peter Nyikos. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.