123 resultados para ENZYME SUPPLEMENTATION
Resumo:
NEVES JR., M., B. GUALANO, H. ROSCHEL, R. FULLER, F. B. BENATTI, A. L. DE SA PINTO, F. R. LIMA, R. M. PEREIRA, A. H. LANCHA JR., E. BONFA. Beneficial Effect of Creatine Supplementation in Knee Osteoarthritis. Med. Sci. Sports Exerc., Vol. 43, No. 8, pp. 1538-1543, 2011. Introduction: The aim of this study was to investigate the efficacy of creatine (CR) supplementation combined with strengthening exercises in knee osteoarthritis (OA). Methods: A randomized, double-blind, placebo-controlled trial was performed. Postmenopausal women with knee OA were allocated to receive either CR (20 g.d(-1) for 1 wk and 5 g.d(-1) thereafter) or placebo (PL) and were enrolled in a lower limb resistance training program. They were assessed at baseline (PRE) and after 12 wk (POST). The primary outcome was the physical function as measured by the timed-stands test. Secondary outcomes included lean mass, quality of life, pain, stiffness, and muscle strength. Results: Physical function was significantly improved only in the CR group (P = 0.006). In addition, a significant between-group difference was observed (CR: PRE = 15.7 +/- 1.4, POST = 18.1 +/- 1.8; PL: PRE = 15.0 +/- 1.8, POST = 15.2 +/- 1.2; P = 0.004). The CR group also presented improvements in physical function and stiffness subscales as evaluated by the Western Ontario and McMaster Universities Osteoarthritis Index (P = 0.005 and P = 0.024, respectively), whereas the PL group did not show any significant changes in these parameters (P > 0.05). In addition, only the CR group presented a significant improvement in lower limb lean mass (P = 0.04) as well as in quality of life (P = 0.01). Both CR and PL groups demonstrated significant reductions in pain (P G 0.05). Similarly, a main effect for time revealed an increase in leg-press one-repetition maximum (P = 0.005) with no significant differences between groups (P = 0.81). Conclusions: CR supplementation improves physical function, lower limb lean mass, and quality of life in postmenopausal women with knee OA undergoing strengthening exercises.
Resumo:
This study evaluated the effects of a micro cycle of overload training (1st-8th day) on metabolic and hormonal responses in male runners with or without carbohydrate supplementation and investigated the cumulative effects of this period on a session of intermittent high-intensity running and maximum-performance-test (9th day). The participants were 24 male runners divided into two groups, receiving 61% of their energy intake as CHO (carbohydrate-group) and 54% in the control-group (CON). The testosterone was higher for the CHO than the CON group after the overload training (694.0 +/- A 54.6 vs. CON 610.8 +/- A 47.9 pmol/l). On the ninth day participants performed 10 x 800 m at mean 3 km velocity. An all-out 1000 m running was performed before and after the 10 x 800 m. Before, during, and after this protocol, the runners received solution containing CHO or the CON equivalent. The performance on 800 m series did not differ in either group between the first and last series of 800 m, but for the all-out 1000 m test the performance decrement was lower for CHO group (5.3 +/- A 1.0 vs. 10.6 +/- A 1.3%). The cortisol concentrations were lower in the CHO group in relation to CON group (22.4 +/- A 0.9 vs. 27.6 +/- A 1.4 pmol/l) and the IGF1/IGFBP3 ratio increased 12.7% in the CHO group. During recovery, blood glucose concentrations remained higher in the CHO group in comparison with the CON group. It was concluded that CHO supplementation possibly attenuated the suppression of the hypothalamic-pituitary-gonadal axis and resulted in less catabolic stress, and thus improved running performance.
Resumo:
Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart. (Hypertension. 2011;58:182-189.).
Resumo:
The aim of this study was to investigate the effect of supplementation of vitamin E, vitamin C, and zinc on the oxidative stress in burned children. In a prospective double-blind placebo-controlled pilot study, 32 patients were randomized as no supplementation (n = 15) or antioxidant supplementation (n = 17) groups. Supplementation consisted of the antioxidant mixture of vitamin C (1.5 times upper intake level), vitamin E (1.35 times upper intake level), and zinc (2.0 times recommended dietary allowance) administered during 7 days starting on the second day of admittance into the hospital. Energy requirement was calculated by the Curreri equation, and protein input was 3.0 g/kg of ideal body mass index (percentile 50 degrees). Total antioxidant capacity of plasma and malondialdehyde were used to monitor oxidative stress. The time of wound healing was evaluated as the main clinical feature. Patients (age 54.2 +/- 48.9 months, 65.6% males), who exhibited 15.5 +/- 6.7% of total burn area, showed no differences in age and sex, when compared with controls. Intake of the administered antioxidants was obviously higher in treated subjects (P = .005), and serum differences were confirmed for vitamin E and C, but not for zinc (P = .180). There was a decrease in lipid peroxidation (malondialdehyde level) (P = .006) and an increase in vitamin E concentrations in the antioxidant supplementation group (P = .016). The time of wound healing was lower in the supplemented group (P < .001). The antioxidant supplementation through vitamin E and C and the mineral zinc apparently enhanced antioxidant protection against oxidative stress and allowed less time for wound healing. (J Burn Care Res 2009;30:859-866)
Resumo:
Background. Prior to the introduction of enzyme replacement therapy (ERT), management of Fabry disease (FD) consisted of symptomatic and palliative measures. ERT has been available for several years using recombinant human agalsidase alfa, an analogue of alpha-galactosidase A (GALA). However, the limitations of ERT in improving kidney function have not been established. This study evaluates the safety and therapeutic effect of agalsidase alfa replacement in terms of kidney function and reduction in 24-hour proteinuria. Methods. During the period between January 1, 2002, and August 1, 2005, nine Fabry patients (7 male, 2 female) were treated according to protocol, receiving 0.2 mg/kg agalsidase alfa IV every two weeks. Kidney function was evaluated by measuring the glomerular filtration rate (GFR) using chromium ethylene diamine tetra-acetate clearance ((51)Cr-EDTA mL/min/1.73 m(2)) at baseline, 12, 24, and 36 months. 24-hour proteinuria was measured at baseline, 3, 6, 12, 18, 24, and 36 months of ERT. Kidney disease was classified according to National Kidney Foundation Disease Outcome Quality Initiative (NKF/DOQI) Advisory Board criteria, which define stage I chronic kidney disease (CKD) as GFR >= 90mL/min/1.73 m(2), stage II as 60-89 mL/min/1.73m(2), stage III as 30-59 mL/min/1.73 m(2), stage IV as 15-29 mL/min/1.73m(2), and stage V as < 15 mL/min/1.73m(2). Results. Six patients completed 36 months of therapy, 2 patients completed 18 months, and 1 patient completed 12 months. Mean patient age at baseline was 34.6 +/- 11.3 years. During the study period, kidney function remained stable in patients with stages I, II, or III CKD. One patient, who entered the study with stage IV CKD, progressed to end-stage chronic kidney disease, beginning hemodialysis after 7 months and receiving a kidney transplant after 12 months of ERT. Proteinuria also remained stable in the group of patients with pathologic proteinuria. The use of agalsidase alfa was well tolerated in 99.5% of the infusions administered. Conclusion. Over the course of 36 months of ERT, there was no change in kidney function and 24-hour proteinuria. This suggests thatagalsidase alfa may slow or halt the progression of kidney disease when used before extensive kidney damage occurs. No significant side effects were observed with ERT during the course of the study.
Resumo:
Angiotensin (Ang) I-converting enzyme (ACE) is involved in the control of blood pressure by catalyzing the conversion of Ang I into the vasoconstrictor Ang II and degrading the vasodilator peptide bradykinin. Human ACE also functions as a signal transduction molecule, and the binding of ACE substrates or its inhibitors initiates a series of events. In this study, we examined whether Ang II could bind to ACE generating calcium signaling. Chinese hamster ovary cells transfected with an ACE expression vector reveal that Ang II is able to bind with high affinity to ACE in the absence of the Ang II type 1 and type 2 receptors and to activate intracellular signaling pathways, such as inositol 1,4,5-trisphosphate and calcium. These effects could be blocked by the ACE inhibitor, lisinopril. Calcium mobilization was specific for Ang II, because other ACE substrates or products, namely Ang 1-7, bradykinin, bradykinin 1-5, and N-acetyl-seryl-aspartyl-lysyl-proline, did not trigger this signaling pathway. Moreover, in Tm5, a mouse melanoma cell line endogenously expressing ACE but not Ang II type 1 or type 2 receptors, Ang II increased intracellular calcium and reactive oxygen species. In conclusion, we describe for the first time that Ang II can interact with ACE and evoke calcium and other signaling molecules in cells expressing only ACE. These findings uncover a new mechanism of Ang II action and have implications for the understanding of the renin-Ang system. (Hypertension. 2011;57:965-972.) . Online Data Supplement
Resumo:
Becari C, Teixeira FR, Oliveira EB, Salgado MC. Angiotensin-converting enzyme inhibition augments the expression of rat elastase- 2, an angiotensin II-forming enzyme. Am J Physiol Heart Circ Physiol 301: H565-H570, 2011. First published May 20, 2011; doi:10.1152/ajpheart.00534.2010.-Mounting evidence suggest that tissue levels of angiotensin (ANG) II are maintained in animals submitted to chronic angiotensin-converting enzyme (ACE) inhibitor treatment. We examined the expression levels of transcripts for elastase-2, a chymostatin-sensitive serine protease identified as the alternative pathway for ANG II generation from ANG I in the rat vascular tissue and the relative role of ACE-dependent and -independent pathways in generating ANG II in the rat isolated carotid artery rings of spontaneously hypertensive rats (SHR) and Wistar normotensive rats (WNR) treated with enalapril for 7 days. Enalapril treatment decreased blood pressure of SHR only and resulted in significantly more elastase-2 mRNA expression in carotid artery of both enalapril-treated WNR and SHR. Captopril induced a comparable rightward shift of concentration-response curves to ANG I in vehicle and enalapril-treated rats, although this effect was of lesser magnitude in SHR group. Chymostatin induced a rightward shift of the dose response to ANG I in vehicle-treated and a decrease in maximal effect of 22% in enalapril-treated WNR group. Maximal response induced by ANG I was remarkably reduced by chymostatin in enalapril-treated SHR carotid artery (by 80%) compared with controls (by 23%). Our data show that chronic ACE inhibition was associated with augmented functional role of non-ACE pathway in generating ANG II and increased elastase-2 gene expression, suggesting that this protease may contribute as an alternative pathway for ANG II generation when ACE is inhibited in the rat vascular tissue.
Resumo:
Obesity is considered a worldwide public health problem showing an increased prevalence in developing countries, with urgent need for new and more efficient drugs and therapies. Enalapril, an angiotensin-I converting enzyme inhibitor (ACEi), is classically used in antihypertensive therapies, however, earlier publications have shown that this drug could also have significant impact on body weight in rats as well as in humans, besides reducing blood pressure. The effect of this drug in the white adipose tissue has been neglected for long time, even considering that most components of the renin-angiotensin and kallikrein-kinin system are expressed in this tissue. Furthermore, the adipose tissue is considered today as one of the most important sites for endocrine/inflammatory regulation of appetite and energy output and AngII has been linked to the metabolism in this tissue. Therefore, we analyzed the influence of chronic enalapril treatment in normotensive rats at earlier ages, evaluating body weight, energy homeostasis, lipid profile and serum levels of the hormones leptin and insulin, in the presence of a standard or a palatable hyperlipidic diet regimen for one month. Our results show that enalapril treatment is able to reduce body fat on both diets, without alteration in serum lipid profile. Furthermore, animals receiving enalapril showed reduction in food intake, leptin level and energy intake. In summary, these findings show for the first time that the ACEi enalapril reduces body fat in young normotensive rats and highlights a novel target to treat obesity and associated diseases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Debaryomyces hansenii cells cultivated on galactose produced extracellular and intracellular alpha-galactosidases, which showed 54.5 and 54.8 kDa molecular mass (MALDI-TOF), 60 and 61 kDa (SDS-PAGE) and 5.15 and 4.15 pI values, respectively. The extracellular and intracellular deglycosylated forms presented 36 and 40 kDa molecular mass, with 40 and 34% carbohydrate content, respectively. The N-terminal sequences of the alpha-galactosidases were identical. Intracellular alpha-galactosidase showed smaller thermostability when compared to the extracellular enzyme. D. hansenii UFV-1 extracellular alpha-galactosidase presented higher k(cat) than the intracellular enzyme (7.16 vs 3.29 s(-1), respectively) for the p-nitrophenyl-alpha-D-galactopyranoside substrate. The K(m) for hydrolysis of pNP alpha Gal, melibiose, stachyose, and raffinose were 0.32, 2.12, 10.8, and 32.8 mM, respectively. The intracellular enzyme was acompetitively inhibited by galactose (K(i) = 0.70 mM), and it was inactivated by Cu(II) and Ag(I). Enzyme incubation with soy milk for 6 h at 55 degrees C reduced stachyose and raffinose amounts by 100 and 73%, respectively.
Resumo:
Introduction Maternal folic acid deficiency is the most important metabolic factor in the etiology of neural tube defects (NTD) and is reduced by ethanol, which is extensively consumed by young women. Objective The objective of the study was to determine whether folic acid supplementation in dietary saccharose is efficient in the prevention NTD induced by ethanol in fetuses of Swiss mice. Materials and methods Pregnant mice were divided into four groups of six animals each: control (C), ethanol (E), deficient-supplemented (DS), and deficient-supplemented+ethanol (DSE). Groups C and E received commercial mouse chow (containing 3 mg/kg folic acid) throughout the experiment, while groups DS and DSE received a folic acid-free diet with the addition of saccharose supplemented with folic acid (2 mg/kg folic acid) in water. Group E and DSE animals received ethanol (4 g/kg) administered intraperitoneally from the seventh to the ninth gestational day (gd) and were euthanized on the 18th gd, while groups C and DS received saline. Results Congenital anomalies were observed in groups E and DSE. The fetal weight and length of the animals in group E were lower than in groups C and DS and, in group DSE, were lower than in groups C and DS. The placental diameter of group E was smaller than that of group C, and the placental weight of group C animals was lower than that of groups E, DSE, and DS. Conclusion The study demonstrated that dietary supplementation with folate in saccharose is an accessible means of consumption that could be further diffused but in an increased dose than recommended to reduce the teratogenic effects of ethanol.
Resumo:
Folic acid (FA) supplementation during carcinogenesis is controversial. Considering the impact of liver cancer as a public health problem and mandatory FA fortification in several countries, the role of FA supplementation in hepatocarcinogenesis should be elucidated. We evaluated FA supplementation during early hepatocarcinogenesis. Rats received daily 0.08 mg (FA8 group) or 0.16 mg (FA16 group) of FA/100 g body weight or water (CO group, controls). After a 2-week treatment, animals were subjected to the ""resistant hepatocyte"" model of hepatocarcinogenesis (initiation with diethylnitrosamine, selection/promotion with 2-acetylaminofluorene and partial hepatectomy) and euthanized after 8 weeks of treatment. Compared to the CO group, the FA16 group presented: reduced (p < 0.05) number of persistent and increased (p < 0.05) number of remodeling glutathione S-transferase (GST-P) positive preneoplastic lesions (PNL); reduced (p < 0.05) cell proliferation in persistent GST-P positive PNL; decreased (p < 0.05) hepatic DNA damage; and a tendency (p < 0.10) for decreased c-myc expression in microdissected PNL. Regarding all these parameters, no differences (p > 0.05) were observed between CO and FA8 groups. FA-treated groups presented increased hepatic levels of S-adenosylmethionine but only FA16 group presented increased S-adenosylmethionine/S-adenosylhomocysteine ratio. No differences (p > 0.05) were observed between experimental groups regarding apoptosis in persistent and remodeling GST-P positive PNL, and global DNA methylation pattern in microdissected PNL. Altogether, the FA16 group, but not the FA8 group, presented chemopreventive activity. Reversion of PNL phenotype and inhibition of DNA damage and of c-myc expression represent relevant FA cellular and molecular effects.
Resumo:
Laboratory diagnosis of hantavirus cardiopulmonary syndrome (HCPS) in Brazil has been performed mostly by a detection of IgM antibodies to recombinant antigen purified from Sin Nombre virus and Andes Virus (ANDV). Recently, a recombinant nucleocapsid (rN) protein of Argentina virus (ARAV), a Brazilian hantavirus, was Obtained in Escherichia coli. To evaluate ARAV rN as antigen for antibody detection, serum samples from 30 patients front Argentina seropositive for hantavirus were tested. All samples were positive for IgG and IgM by enzyme-linked immunosorbent assay (ELISA) using either ARAV rN or ANDV rN antigens. In Brazil, six of 00 serum samples from patients With suspected HCPS (10%) were positive for IgM by ELISA Using ARAV rN antigen and 7 were positive Using ANDV rN antigen. For results obtained with 90 serum samples analyzed by IgM ELISA with ANDV rN antigen, the sensitivity of the IgM ELISA using ARAV rN antigen was 97.2%,, the specificity was 100%, the positive predictive value was 100% and the negative predictive value was 98.1%. The results show that ARAV rN is a Suitable antigen for diagnosis Of hantavirus infection in Brazil and Argentina.
Resumo:
It has been demonstrated that glutamine, a conditionally essential amino acid, improves nitrogen balance, acts as a stimulant of protein synthesis, and decreases proteolysis in myopathic children. In contrast, other studies have shown no beneficial effect of glutamine supplementation on burn victims or critically ill patients. Nonetheless, we hypothesized that glutamine supplementation would increase the fractional protein synthesis rate (FSR) in the jejunal mucosa of malnourished male Wistar rats. Thus, the objective of the present study was to test the effect of daily oral glutamine supplementation (0.42 g kg(-1) d(-1) for 14 days) on the FSR of the jejunal mucosa of healthy and malnourished rats. A 4-hour kinetic study with L-[1-(13)C]leucine was subsequently performed, and jejunal biopsies were obtained 1.5 cm from the Treitz angle and analyzed. Malnourished rats showed a 25% weight loss and increased urinary nitrogen excretion. Plasma amino acid concentration did not differ between groups. (13)C enrichment in plasma and jejunal cells was higher in the malnourished groups than in the healthy group. The FSR (percent per hour) was similar for the control and experimental groups (P > .05), with a mean range of 220%/h to 27%/h. Oral glutamine supplementation alone did not induce higher protein incorporation by the jejunal mucosa in malnourished rats, regardless of total food intake or the presence or absence of glutamine supplementation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Hyperhomocysteinaemia is an independent risk factor for CVD. Recent data show a relationship between homocysteine (Hcy) and free radical formation. Since creatine synthesis is responsible for most of the methyl group transfers that result in Hcy formation, creatine supplementation might inhibit Hcy production and reduce free radical formation. The present study investigated the effects of creatine supplementation on Hcy levels and lipid peroxidation biomarkers. Thirty rats were divided into three groups: control group; diet with creatine group (DCr; 2% creatine in the diet for 28 d); creatine overload plus diet with creatine group (CrO + D; 5 g creatine/kg by oral administration for 5 d + 2 % in the diet for 23 d). Plasma Hcy was significantly lower (P<0.05) in DCr (7.5 (SD 1.2) mu mol/l) and CrO + D (7.2 (SD 1.7) mu mol/l) groups compared with the control group (12.4 (SD 2.2) mu mol/l). Both plasma thiobarbituric acid-reactive species (TBARS) (control, 10 (SD 3.4); DCr, 4.9 (So 0.7); CrO + D, 2.4 (SD 1) mu mol/l) and plasma total glutathione (control, 4.3 (SD 1.9); DCr, 2.5 (SD 0.8); CrO + D, 1.8 (SD 0.5) mu mol/l) were lower in the groups that received creatine (P<0.05). In addition, Hcy showed significant negative correlation (P<0.05) with plasma creatine (r - 0.61) and positive correlation with plasma TBARS (r 0.74). Plasma creatine was negatively correlated with plasma TBARS (r - 0.75) and total peroxide (r - 0.40). We conclude that creatine supplementation reduces plasma Hcy levels and lipid peroxidation biomarkers, suggesting a protective role against oxidative damage. Modulating Hcy fort-nation may, however, influence glutathione synthesis and thereby affect the redox state of the cells.
Resumo:
The aim of the present study was to examine the effects of creatine supplementation on liver fat accumulation induced by a high-fat diet in rats. Rats were fed 1 of 3 different diets for 3 wk: a control liquid diet (C), a high-fat liquid diet (HF), or a high-fat liquid diet supplemented with creatine (HFC). The C and HF diets contained, respectively, 35 and 71% of energy derived from fat. Creatine supplementation involved the addition of 1% (wt:v) of creatine monohydrate to the liquid diet. The HF diet increased total liver fat concentration, liver TG, and liver TBARS and decreased the hepatic S-adenosylmethionine (SAM) concentration. Creatine supplementation normalized all of these perturbations. Creatine supplementation significantly decreased the renal activity of L-arginine:glycine amidinotransferase and plasma guanidinoacetate and prevented the decrease in hepatic SAM concentration in rats fed the HF diet. However, there was no change in either the phosphatidylcholine:phosphatidylethanolamine (PE) ratio or PE N-methyltransferase activity. The HF diet decreased mRNA for PPAR as well as 2 of its targets, carnitine palmitoyltransferase and long-chain acylCoA dehydrogenase. Creatine supplementation normalized these mRNA levels. In conclusion, creatine supplementation prevented the fatty liver induced by feeding rats a HF diet, probably by normalization of the expression of key genes of beta-oxidation. J. Nutr. 141: 1799-1804, 2011.