65 resultados para Cauchy-Riemann equations
Resumo:
In this article, we study further properties of a skew normal distribution, called the skew-normal-Cauchy (SNC) distribution by Nadarajah and Kotz (2003). A stochastic representation is obtained which allows alternative derivations for moments, moments generating function, and skewness and kurtosis coefficients. Issues related to singularity of the Fisher information matrix are investigated.
Resumo:
We consider the scalar delayed differential equation epsilon(x) over dot(t) = -x(t) + f(x(t-1)), where epsilon > 0 and f verifies either df/dx > 0 or df/dx < 0 and some other conditions. We present theorems indicating that a generic initial condition with sign changes generates a solution with a transient time of order exp(c/epsilon), for some c > 0. We call it a metastable solution. During this transient a finite time span of the solution looks like that of a periodic function. It is remarkable that if df/dx > 0 then f must be odd or present some other very special symmetry in order to support metastable solutions, while this condition is absent in the case df/dx < 0. Explicit epsilon-asymptotics for the motion of zeroes of a solution and for the transient time regime are presented.
Resumo:
Motivated by the celebrated example of Y. Kannai of a linear partial differential operator which is hypoelliptic but not locally solvable, we consider it class of evolution operators with real-analytic coefficients and study their local solvability both in L(2) and in the weak sense. In order to do so we are led to propose a generalization of the Nirenberg-Treves condition (psi) which is suitable to our study. (C) 2009 Published by Elsevier Inc.
Resumo:
In this work we prove that the global attractors for the flow of the equation partial derivative m(r, t)/partial derivative t = -m(r, t) + g(beta J * m(r, t) + beta h), h, beta >= 0, are continuous with respect to the parameters h and beta if one assumes a property implying normal hyperbolicity for its (families of) equilibria.
Resumo:
We study the existence and stability of periodic travelling-wave solutions for generalized Benjamin-Bona-Mahony and Camassa-Holm equations. To prove orbital stability, we use the abstract results of Grillakis-Shatah-Strauss and the Floquet theory for periodic eigenvalue problems.