68 resultados para Bayesian hierarchical linear model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is known that patients may cease participating in a longitudinal study and become lost to follow-up. The objective of this article is to present a Bayesian model to estimate the malaria transition probabilities considering individuals lost to follow-up. We consider a homogeneous population, and it is assumed that the considered period of time is small enough to avoid two or more transitions from one state of health to another. The proposed model is based on a Gibbs sampling algorithm that uses information of lost to follow-up at the end of the longitudinal study. To simulate the unknown number of individuals with positive and negative states of malaria at the end of the study and lost to follow-up, two latent variables were introduced in the model. We used a real data set and a simulated data to illustrate the application of the methodology. The proposed model showed a good fit to these data sets, and the algorithm did not show problems of convergence or lack of identifiability. We conclude that the proposed model is a good alternative to estimate probabilities of transitions from one state of health to the other in studies with low adherence to follow-up.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nesse artigo, tem-se o interesse em avaliar diferentes estratégias de estimação de parâmetros para um modelo de regressão linear múltipla. Para a estimação dos parâmetros do modelo foram utilizados dados de um ensaio clínico em que o interesse foi verificar se o ensaio mecânico da propriedade de força máxima (EM-FM) está associada com a massa femoral, com o diâmetro femoral e com o grupo experimental de ratas ovariectomizadas da raça Rattus norvegicus albinus, variedade Wistar. Para a estimação dos parâmetros do modelo serão comparadas três metodologias: a metodologia clássica, baseada no método dos mínimos quadrados; a metodologia Bayesiana, baseada no teorema de Bayes; e o método Bootstrap, baseado em processos de reamostragem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally. the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main goal of this paper is to investigate a cure rate model that comprehends some well-known proposals found in the literature. In our work the number of competing causes of the event of interest follows the negative binomial distribution. The model is conveniently reparametrized through the cured fraction, which is then linked to covariates by means of the logistic link. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis in the proposed model. The procedure is illustrated with a numerical example.