80 resultados para iron-reducing phenolic compounds
Resumo:
In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA (R)) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA (R) type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Soybean is an important Brazilian agricultural commodity that contains a high concentration of isoflavones. Many studies showed that isoflavones are active in the prevention of many human diseases. However, the correct processing techniques used to prepare the soy foodstuffs are important to maintain the active forms. The objective of this study was to evaluate the effect of gamma irradiation on the isoflavone contents of the defatted soybean flour when compared with soybean molasses, a derivative from the soybean food production. After extracting phenolic compounds with methanol aqueous solution (80%), isoflavones were detected by reverse-phase high-performance liquid chromatography/diode-array detector. The radiation doses of 2 and 5 kGy presented a small effect on the isoflavones content of defatted soy flour. Samples irradiated at 50 kGy showed lower isoflavone contents. The observed reduction in the concentration of isoflavones-daidzein, glycitein and genistein-induced by gamma radiation in soy molasses was not significant in defatted soy flour, thus suggesting that isoflavones in defatted soy flour were not eliminated by gamma radiation at rates up to 50 kGy.
Resumo:
MARTINS, A. R. (Institute of Biology, State University of Campinas - UNICAMP, 13083-970, Campinas, SP, Brazil), N. PUT, (Division of Biology and Education, University of Vechta, 49377 Vechta, Germany), A. N. SOARES, A.B BOMB, and B. APPEZZATO DA GLORIA (Biological Science Department, Escola Superior de Agricultura `Luiz de Queiroz`, University of Sao Paulo, 13418-900, Piracicaba, SP, Brazil). J. Torrey Bot. Soc. 137: 220-235. 2010.-New approaches to underground systems in Brazilian Smilax species (Smilacaceae). Scientific studies show that the watery extract of the thickened underground stem and its adventitious roots of the genus Smilax can act as a therapeutic agent in immunoinflammatory disorders, such as rheumatic arthritis. Brazilians have used this genus of plants in folk medicine, however it is very hard to identify these species, since the morphology of the underground systems is very similar in this group. For better identification of those systems, we studied six species of Smilax L. (S. brasiliensis, S. campestris, S. cissoides, S. goyazana, S. oblongifolia and S. rufescens), collected in different regions of Brazil with different physiognomies and soil characteristics. The main purpose is to describe the morpho-anatomy of the underground systems and to analyze if their structure depends on environmental conditions. The underground stem (rhizophore) is of brown color and it is knotty, massive, slender (S. rufescens) or tuberous (S. brasiliensis, S. campestris, S. cissoides, S. goyazana and S. oblongifolia). The tuberization is a result of primary thickened meristem (PTM) activity. The color and thickness of the adventitious roots change during development because the epidermis and outer cortex are disposed of, so the inner cortex becomes the new covering tissue with lignified and dark color cells. There are differences in starch grain shapes in mature roots. The chemical attributes of the soil are very similar in all studied environments and, even when soil characteristics varied, all the species` underground system was distributed close to the soil surface (10 to 15 cm deep). The species exhibited clonal growth hence their underground system functions as storage structures and the axillary buds can sprout into new stems. Only Smilax rufescens, collected in sandy soil of Restinga, has vegetative dispersal due to the runners.
Resumo:
BACKGROUND: This study reported the effects of the daily intake of anthocyanins and ellagitannins (ET) extracted from blackberries on the markers for oxidative status in healthy rats. RESULTS: The phenolic compounds were administered from three different extracts: an aqueous extract of blackberry (BJ) and its two derived fractions: anthocyanin-enriched (AF) and ET-enriched (EF) fractions. After 35 days` administration, the AF and EF extracts significantly reduced thiobarbituric acid reactive substance levels and increased glutathione levels in the liver, kidney and brain. Plasma antioxidant capacity increased only in the group that received AF. Antioxidant enzyme activity and expression did not follow a pattern of response varying according to the tissues and extracts. A significant increase in the catalase activity was observed only in the plasma of the groups administered anthocyanin-containing extracts, which were the BJ and AF groups. Glutathione peroxidase activity was significantly increased in the liver and brain after EF treatment, and the highest increase in its expression was observed in the livers and brains of rats that received AF and EF, respectively. CONCLUSION: The results demonstrate that long-term intake of anthocyanin and ET through diet affects antioxidant enzyme activity and expression, and enhances oxidative markers in healthy rats. (C) 2010 Society of Chemical Industry
Resumo:
Red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) were evaluated for the total phenolics, antioxidant capacity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. The total phenolics content ranged from 3.2 (green gooseberries) to 13.5 (black currants) mg/g fruit fresh weight. No correlation was found between total phenolics and antioxidant activity. The major phenolic compounds were quercetin derivatives (black currants and green gooseberries) and chlorogenic acid (red currants and red gooseberries). Red currants had the highest alpha-glucosidase, alpha-amylase and ACE inhibitory activities. Therefore red currants could be good dietary sources with potential antidiabetes and antihypertension functionality to compliment overall dietary management of early stages of type 2 diabetes.
Resumo:
Foods provide essential and bioactive compounds with health-promoting properties such as antioxidant, anti-inflammatory, and hypocholesterolemic activities, which have been related to vitamins A, C, and E and phenolic compounds such as flavonoids. Therefore, the aim of this work was to identify potential sources of bioactive compounds through the determination of flavonoids and ellagic acid contents and the in vitro antioxidant capacity and alpha-glucosidase and alpha-amylase inhibitory activities of Brazilian native fruits and commercial frozen pulps. Camu-camu, cambuci, uxi, and tucuma and commercial frozen pulps of cambuci, cagaita, coquinho azedo, and araca presented the highest antioxidant capacities. Cambuci and cagaita exhibited the highest alpha-glucosidase and alpha-amylase inhibitory activities. Quercetin and kaempferol derivatives were the main flavonoids present in most of the samples. Ellagic acid was detected only in umbu, camu-camu, cagaita, araca, and cambuci. According to the results, native Brazilian fruits can be considered as excellent sources of bioactive compounds.
Resumo:
The cashew apple (Anacardium occidentale L.) contains phenolic compounds usually related with antioxidant properties. Then, the aim of this study was to investigate its antioxidant capacity. The antioxidant capacity of the hydroalcoholic extract of the cashew apple pulp (EHAlc.) was assessed for the scavenging of the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) by in vitro method and by an in vivo essay. For this essay a 30-day oral (gavage, EHAlc. 200 and 400 mg/kg) study was conducted in Wistar male rats, evaluating hepatic, plasma and brain tissues. In DPPH model, the extract demonstrated antioxidant activity of 95% (largest concentration, 1000 mu g/mL). There were found no relevant peroxidation comparing the treated animals with the control group. However, the treated group presented a lower level of brain lipoperoxidation. Also in the treated animals brain tissue was found the largest amount of polyunsaturated fatty acids (PUFA), mainly docosahexaenoic (DHA). Therqfore, the analyzed extract from cashew apple pulp clone CCP-76 contains effective natural antioxidants, responsible for free radical scavenging in vitro and also for decreasing the brain lipoperoxidation and keeping the PUFAS levels in Wistar rats.
Resumo:
Brazilian propolis contains several phenolic compounds among which 5 diprenyl-4-hydroxycinnamic acid (artepillin-C) is commonly found in areas where flora is rich in Baccharis species. The quantification of artepillin-C has become an important factor as an indicator of Brazilian propolis quality and the compound may be used as a chemical marker for quality control in exportating green propolis. This work was to validate the method and evaluate the content of artepillin-C from 33 samples collected in different Brazilian regions. The method used was HPLC with UV-vis detection and a reversed-phase C-18 Column. The validation parameters studied were: linearity, accuracy, precision, quantification and detection limits. The results obtained were: detection limit = 0.0036 mu g/mL, quantification limit = 0.012 mu g/mL, accuracy = 0.0064 and 0.078, recovery 98-102%. Artepillin-C content varied from 0 to 11% depending on the geographical origin. Propolis from the southeast region presented the highest level of artepillin-C (5.0-11.0%). Whist that from the northeast region did not show any artepillin-C. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Aim of the study: Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. Materials and methods: LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 mu M CGA in presence of lipopolysaccharide from Escherichia coil (LPS, 5 mu g/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha [TNF-alpha; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, beta(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. Results: CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced beta(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression: inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Conclusions: Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This paper describes an analytical method for the rapid screening and identification of the phenolic constituents present in the polar extracts of different Lychnophora spp. using LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS. Compounds were identified based on UV, retention time, MS experiments and MS/MS of precursor ion or standard. On-line phytochemical investigation of Lychnophora spp. allowed for the identification of flavonoids, chlorogenic acid derivatives and lactones. Some of the observed compounds were for the first time identified in Lychnophora species in a fast analytical procedure. The data obtained here may be helpful to the investigation of polar constituents from other Lychnophora species.
Resumo:
Flower and inflorescence anatomy and morphology of Exostyles, Harleyodendron, Holocalyx, Lecointea, and Zollernia (Leguminosae, Lecointea clade) were studied. Features common to all genera but otherwise rare within the Leguminosae include: (1) the presence of phenolic compounds in the epidermal cells of the anthers and subepidermal cells of the bracteoles, sepals, petals, and ovaries (absent in Holocalyx balansae); (2) simple trichomes on the adaxial base of the bracteoles and on the surface of the calyx and ovaries; and (3) tapetum persisting until the androspores are formed. Other notable anatomical features are: (1) colleters on the adaxial bases of the bracts and bracteoles of Holocalyx balansae and Zollernia ilicifolia; (2) trichomes on the anthers of Harleyodendron unifoliolatum, Holocalyx balansae, Lecointea hatschbachii, Zollernia ilicifolia and Z. magnifica; (3) osmophores on the petals of Exostyles godoyensis; (4) asynchronous pollen development in the anthers of Holocalyx balansae and Zollernia magnifica; and (5) vascular bundles surrounded by lignified fibers in Harleyodendron unifoliolatum. These anatomical characters are discussed according to their possible phylogenetic implications.
Resumo:
This article presents an investigation of the potential of spray and spouted bed technology for the production of dried extracts of Rosmarinus officinalis Linne, popularly known as rosemary. The extractive solution was characterized by loss on drying, extractable matter and total phenolic and flavonoid compounds (chemical markers). The product was characterized by determination of loss on drying, size distribution, morphology, flow properties and thermal degradation and thermal behavior. The spray and spouted bed dryer performance were assessed through estimation of thermal efficiency, product accumulation and product recovery. The parameters studied were the inlet temperature of the spouting gas (80 and 150 degrees C) and the feed mass flow rate of concentrated extract relative to the evaporation capacity of the dryer, W-s/W-max (15 to 75%). The atomizing air flow rate was maintained at 20 l/min with a pressure of 196.1 kPa. The spouting gas flow rate used in the drying runs was 40% higher than the gas flow under the condition of minimum spouting. The spray drying gas flow rate was fixed at 0.0118 kg/s. Under the conditions studied, performance in the spray and spouted bed drying of rosemary extract was poor, causing high degradation of the marker compounds (mainly the phenolic compounds). Thus, process improvements are required before use on an industrial scale.
Resumo:
Lichen phenolic compounds exhibit antioxidant, antimicrobial, antiproliferative. and cytotoxic activities. The purpose of this study was to evaluate the anticancer activity of lecanoric acid, a secondary metabolite of the lichen Parmotrema tinctorum, and its derivatives, orsellinates, obtained by structural modification. A cytotoxicity assay was carried out hi vitro with sulforhodamine B (SRB) using HEp-2 larynx carcinoma, MCF7 breast carcinoma, 786-0 kidney carcinoma, and B16-F10 murine melanoma cell lines, in addition to a normal (Vero) cell line in order to calculate the selectivity index of the compounds. n-Butyl orsellinate was the most active compound, with IC(50) Values (the concentration that inhibits 50% of growth) ranging from 7.2 to 14.0 mu g/ml, against all the cell lines tested. The compound was more active (IC(50), = 11.4 mu g/mL) against B16-F10 cells than was cisplatin (12.5 mu g/mL). Conversely, lecanoric acid and methyl orsellinate were less active against all cell lines, having an IC(50) value higher than 50 mu g/mL. Ethyl orsellinate was more active against HEp-2 than against MCF7, 786-0, or B16-F10 cells. The same pattern was observed for n-propyl and n-butyl orsellinates. n-Pentyl orsellinate was less active than n-propyl or n-butyl orsellinates against HEp-2 cells. The orsellinate activity increased with chain elongation (from methyl to n-butyl), a likely consequence of an increase in lipophilicity. The results revealed that the structural modification of lecanoric acid increases the cytotoxic activity of the derivatives tested.
Resumo:
The electrochemical treatment of a synthetic tannery wastewater prepared with 30 compounds used in animal skin processing was studied. Electrolyses were performed in a one-compartment flow cell at a current density of 20 mA cm(-2), using a dimensionally stable anode (DSA (R)) of composition Ti/Ir(0.10)Sn(0.90)O(2) as the working electrode. Effects of chloride concentration and presence of sulfate were evaluated. Variation in the concentration of phenolic compounds as a function of electrolysis time revealed a first-order exponential decay; faster phenol removals were obtained with increasing chloride concentration in the wastewater. Lower phenol removals were obtained in the presence of sulfate. Higher chloride concentrations led to a faster decrease in total organic carbon (TOC), chemical oxygen demand (COD), and absorbance values at 228 nm. Faster wastewater color removal, higher current efficiency and lower energy consumption were also obtained. This electrochemical treatment was also able to reduce the wastewater toxicity for Daphnia similis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Context: Species of Baccharis exhibit antibiotic, antiseptic, and wound-healing properties, and have been used in the traditional medicine of South America for the treatment of inflammation, headaches, diabetes, and hepatobiliary disorders. Objective: To investigate the anti-inflammatory activity of organic phases from EtOH extract of the aerial parts of Baccharis uncinella DC (Asteraceae). Materials and methods: The crude EtOH extract from the aerial parts of B. uncinella was subjected to partition procedures and the corresponding CH(2)Cl(2) and EtOAc phases were subjected to several chromatographic separation procedures. Thus, these phases and their purified compounds were assayed for evaluation of anti-inflammatory activity. Results: The CH(2)Cl(2) phase from EtOH extract from B. uncinella contained two triterpenoids (oleanolic and ursolic acids) and one flavonoid (pectolinaringenin), whereas the respective EtOAc phase showed to be composed mainly by two phenylpropanoid derivatives (caffeic and ferulic acids). The CH(2)Cl(2) and EtOAc phases as well as their isolated compounds exhibited anti-inflammatory effects against inflammatory reactions induced by phospholipase A2 (from Crotalus durissus terrificus venom) and by carrageenan. Discussion and conclusion: The results suggested that the components obtained from partition phases of EtOH extract of B. uncinella could represent lead molecules for the development of anti-inflammatory agents. Additionally, the results confirmed the use of Baccharis genus in the traditional medicine of South America for the treatment of inflammation and other heath disorders. To date, the present work describes for the first time the anti-inflammatory effects of compounds isolated from B. uncinella.