228 resultados para clean organic synthesis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydroxypropargylpiperidones rac-1-3 were efficiently obtained by a one-pot three-component coupling reaction; enantioenriched propargylpiperidones were then obtained by a kinetic resolution process using the lipase from Candida antarctica. Lipase CALB has been shown to efficiently catalyse the stereocontrolled acetylation of hydroxypropargylpiperidones rac-3 by promoting stereodiscrimination at the carbinolic centre. The enzymatic catalytic processes allow the separation of the (S,R)- and (S,S)-3 diastereoisomers into the corresponding acetates produced as a (R,S)- and (R,R)-6 diastereoisomeric pair. The CALB was able to discriminate the stereogenic centre of the secondary (R)-enantiomer of rac-3 according to the Kaslauzkas rule. The remote stereogenic centre was not discriminated by the lipase. The functionalised enantioenriched diastereoisomers obtained are important building blocks in organic synthesis. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium and magnesium organotellurolates were reacted with lactones producing the corresponding tellurocarboxylic acids. Treatment of the reaction mixture with lithium aluminum hydride allowed the isolation of the corresponding hydroxytellurides in a one-pot operation. (C) 2009 Published by Elsevier Ltd

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ring opening reaction of N-tosyl aziridines with dilithium arylthienylcyanocuprates generated from arylbutyltellurides produced phenethylamine derivatives in good to excellent yields. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prussian Blue has been introduced as a mediator to achieve stable, sensitive, reproducible, and interference-free biosensors. However, Na(+), Li(+), H(+), and all group II cations are capable to block the activity of Prussian Blue and, because Na(+) can be found in most human fluids, Prussian Blue analogs have already been developed to overcome this problem. These analogs, such as copper hexacyanoferrate, have also been introduced in a conducting polypyrrole matrix to create hybrid materials (copper hexacyanoferrate/polypyrrole, CuHCNFe/Ppy) with improved mechanical and electrochemical characteristics. Nowadays, the challenges in amperometric enzymatic biosensors consist of improving the enzyme immobilization and in making the chemical signal transduction more efficient. The incorporation of nanostructured materials in biosensors can optimize both steps and a nanostructured hybrid CuHCNFe/Ppy mediator has been developed using a template of colloidal polystyrene particles. The nanostructured material has achieved sensitivities 7.6 times higher than the bulk film during H(2)O(2) detection and it has also presented better results in other analytical parameters such as time response and detection limit. Besides, the nanostructured mediator was successfully applied at glucose biosensing in electrolytes containing Prussian Blue blocking cations. (C) 2008 The Electrochemical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Fatty acid sugar esters are used as non-ionic surfactants in cosmetics, foodstuffs and pharmaceuticals. In particular, monoesters of xylitol have attracted industrial interest due to their outstanding biological activities. In this work, xylitol monoesters were obtained by chemoenzymatic synthesis, in which, first, xylitol was made soluble in organic solvent by chemo-protecting reaction, followed by enzymatic esterification reaction using different acyl donors. A commercial immobilized Candida antartica lipase was used as catalyst, and reactions with pure xylitol were carried out to generate data for comparison. RESULTS: t-BuOH was found to be the most suitable solvent to carry out esterification reactions with both pure and protected xylitol. The highest yields were obtained for reactions carried out with pure xylitol, but in this case by-products, such as di- and tri-esters isomers were formed, which required a multi-step purification process. For the systems with protected xylitol, conversions of 86%, 58% and 24% were achieved using oleic, lauric and butyric acids, respectively. The structures of the monoesters were confirmed by (13)C- and (1)H-NMR and microanalysis. CONCLUSION: The chemoenzymatic synthesis of xylitol monoesters avoided laborious downstream processing when compared with reactions performed with pure xylitol. Monoesters production from protected xylitol was shown to be a practical, economical, and clean route for this process, allowing a simple separation, because there are no other products formed besides xylitol monoesters and residual xylitol. (C) 2009 Society of Chemical Industry

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoparticles of NiMn(2)O(4) were successfully obtained by mixing gelatin and inorganic salts NiCl(2) center dot 6H(2)O and MnCl(2) center dot 4H(2)O in aqueous solution. The mixture has been synthesized at different temperatures and resulted in NiMn(2)O(4) nanoparticles with crystallites size in the range of 14-44 nm, as inferred from X-ray powder diffraction (XRPD) data. We have also observed that both the average crystallite size and the unit cell parameters increase with increasing synthesis temperature. Magnetic measurements confirmed the presence of a magnetic transition near 110K. (C) 2008 Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work deals with the covalent functionalization of single-wall carbon nanotubes (SWNTs) with phenosafranine (PS) and Nile Blue (NB) dyes. These dyes can act as photosensitizers in energy and electron transfer reactions, with a potential to be applied in photodynamic therapy. Several changes in the characteristic Raman vibrational features of the dyes suggest that a covalent modification of the nanotubes with the organic dyes occurs. Specifically, the vibrational modes assigned to the NH(2) moieties of the dyes are seen to disappear in the SWNT-dye nanocomposites, corroborating the bond formation between amine groups in the dyes and carboxyl groups in the oxidized nanotubes. The X-ray absorption (XANES) data also show, that the intense band at 398.6 eV attributed to 1s -> 2p pi* transition of the nitrogen of the aromatic PS ring, is shifted due to the bonding with the carbonic structure of the SWNTs. The cytotoxicity data of dyes-modified SWNT composites in the presence and absence of light shows that the SWNT-NB (4 mu g/mL) composite presents a good photodynamic effect, namely a low toxicity in the dark, higher toxicity in the presence of light and also a reduced dye photobleaching by auto-oxidation. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A metal-free protocol was developed to synthesize indanes by ring contraction of 1, 2-dihydronaphthalenes promoted by PhI(OH)OTs (HTIB or Koser's reagent). This oxidative rearrangement can be performed in several solvents (MeOH, CH3CN, 2 , 2, 2-trifluoroethanol (TFE), 1 , 1, 1, 3, 3, 3-hexafluoroisopropanol (HFIP), and a 1:4 mixture of TFE:CH2Cl2) under mild conditions. The ring contraction diastereoselectively gives functionalized trans-1, 3-disubstituted indanes, which are difficult to obtain in synthetic organic chemistry

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through direct transmetalation reaction of Z-vinylic tellurides with nBuLi was observed the unexpected isomerization of double bonds leading to potassium E-vinyltrifluoroborates salts in low to moderate yields. Using EPR spin trapping experiments the radical species that promoted the stereoinversion of Z-vinylic organometallic species during the preparation of potassium vinyltrifluoroborate salts was identified. The experiments support the proposed mechanism, which is based on the homolytic cleavage of the TenBu bond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of granulometry and organic treatment of a Brazilian montmorillonite (MMT) clay on the synthesis and properties of poly(styrene-co-n-butyl acrylate)/layered silicate nanocomposites was studied. Hybrid latexes of poly(styrene-co-butyl acrylate)/MMT were synthesized via miniemulsion polymerization using either sodium or organically modified MMT. Five clay granulometries ranging from clay particles smaller than 75 mu m to colloidal size were selected. The size of the clay particles was evaluated by Specific surface area measurements (BET). Cetyl trimethyl ammonium chloride was used as an organic modifier to enhance the clay compatibility with the monomer phase before polymerization and to improve the clav distribution and dispersion within the polymeric matrix after polymerization. The sodium and organically modified natural clays as well as the composites were characterized by X-ray diffraction analysis. The latexes were characterized by dynamic light scattering. The mechanical, thermal, and rheological properties of the composites obtained were characterized by dynamical-mechanical analysis, thermogravimetry, and small amplitude oscillatory, shear tests, respectively. The results showed that smaller the size of the organically modified MMT, the higher the degree of exfoliation of nanoplatelets. Hybrid latexes in presence of Na-MMT resulted in materials with intercalated structures. (C) 2009 Wiley, Periodicals, Inc. J Appl Polym Sci 112: 1949-1958, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid latices of poly(styrene-co-butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer-MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 3658-3669, 2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this paper is to develop a mathematical model for the synthesis of anaerobic digester networks based on the optimization of a superstructure that relies on a non-linear programming formulation. The proposed model contains the kinetic and hydraulic equations developed by Pontes and Pinto [Chemical Engineering journal 122 (2006) 65-80] for two types of digesters, namely UASB (Upflow Anaerobic Sludge Blanket) and EGSB (Expanded Granular Sludge Bed) reactors. The objective function minimizes the overall sum of the reactor volumes. The optimization results show that a recycle stream is only effective in case of a reactor with short-circuit, such as the UASB reactor. Sensitivity analysis was performed in the one and two-digester network superstructures, for the following parameters: UASB reactor short-circuit fraction and the EGSB reactor maximum organic load, and the corresponding results vary considerably in terms of digester volumes. Scenarios for three and four-digester network superstructures were optimized and compared with the results from fewer digesters. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of 1,1,1-trichloro-4-methoxy-3-penten-2-one (1) with hydrazines (2a-h) (NH2NHR, R = H, Me, t-Bu, Ph, 4-NO2-C6H4, C6F5, CO2Me, CONH2) under differing conditions regiospecifically affords different pyrazole derivatives, 3-methyl-5-trichloromethyl-5-hydroxy-4,5-dihydropyrazoles (3a, d-h), 3-methyl-5-trichloromethyl-1H-pyrazoles (4a,b,d-g) and 5-carboxyethyl-3-methyl-1H-pyrazoles (5a-e). The structural assignments were based on the analysis of their H-1/C-13 NMR and ESI-MS data.