58 resultados para Yoneda Algebras
Resumo:
Analogous to *-identities in rings with involution we define *-identities in groups. Suppose that G is a torsion group with involution * and that F is an infinite field with char F not equal 2. Extend * linearly to FG. We prove that the unit group U of FG satisfies a *-identity if and only if the symmetric elements U(+) satisfy a group identity.
Resumo:
We introduce a new class of noncommutative rings - Galois orders, realized as certain subrings of invariants in skew semigroup rings, and develop their structure theory. The class of Calms orders generalizes classical orders in noncommutative rings and contains many important examples, such as the Generalized Weyl algebras, the universal enveloping algebra of the general linear Lie algebra, associated Yangians and finite W-algebras (C) 2010 Elsevier Inc All rights reserved
Resumo:
We describe the simple Lie superalgebras arising from the unital structurable superalgebras of characteristic 0 and construct four series of the unital simple structurable superalgebras of Cartan type. We give a classification of simple structurable superalgebras of Cartan type over an algebraically closed field F of characteristic 0. Together with the Faulkner theorem on the classification of classical such superalgebras, it gives a classification of the simple structurable superalgebras over F. Crown Copyright (C) 2010 Published by Elsevier Inc. All rights reserved.
Resumo:
The concept of a partial projective representation of a group is introduced and studied. The interaction with partial actions is explored. It is shown that the factor sets of partial projective representations over a field K are exactly the K-valued twistings of crossed products by partial actions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We prove a coordinatization theorem for noncommutative Jordan superalgebras of degree n > 2, describing such algebras. It is shown that the symmetrized Jordan superalgebra for a simple finite-dimensional noncommutative Jordan superalgebra of characteristic 0 and degree n > 1 is simple. Modulo a ""nodal"" case, we classify central simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0.
Resumo:
Can Boutet de Monvel`s algebra on a compact manifold with boundary be obtained as the algebra Psi(0)(G) of pseudodifferential operators on some Lie groupoid G? If it could, the kernel G of the principal symbol homomorphism would be isomorphic to the groupoid C*-algebra C*(G). While the answer to the above question remains open, we exhibit in this paper a groupoid G such that C*(G) possesses an ideal I isomorphic to G. In fact, we prove first that G similar or equal to Psi circle times K with the C*-algebra Psi generated by the zero order pseudodifferential operators on the boundary and the algebra K of compact operators. As both Psi circle times K and I are extensions of C(S*Y) circle times K by K (S*Y is the co-sphere bundle over the boundary) we infer from a theorem by Voiculescu that both are isomorphic.
Resumo:
Let A be a finite dimensional k-algebra, (, ) be a stratifying system in mod(A) and F() be the class of -filtered A-modules. In this article, we give the definition and also study some of the properties of the relative socle in F(). We approach the relative socle in three ways. Namely, we view it as (1) a -semisimple subobject of M having the largest -length, (2) a maximal -semisimple subobject of M, and (3) a minimal -essential subobject of M.
Resumo:
In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Let F be an infinite field of characteristic different from 2, G a group and * an involution of G extended by linearity to an involution of the group algebra FG. Here we completely characterize the torsion groups G for which the *-symmetric units of FG satisfy a group identity. When * is the classical involution induced from g -> g(-1), g is an element of G, this result was obtained in [ A. Giambruno, S. K. Sehgal, A. Valenti, Symmetric units and group identities, Manuscripta Math. 96 (1998) 443-461]. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We consider polynomial identities satisfied by nonhomogeneous subalgebras of Lie and special Jordan superalgebras: we ignore the grading and regard the superalgebra as an ordinary algebra. The Lie case has been studied by Volichenko and Baranov: they found identities in degrees 3, 4 and 5 which imply all the identities in degrees <= 6. We simplify their identities in degree 5, and show that there are no new identities in degree 7. The Jordan case has not previously been studied: we find identities in degrees 3, 4, 5 and 6 which imply all the identities in degrees <= 6, and demonstrate the existence of further new identities in degree 7. our proofs depend on computer algebra: we use the representation theory of the symmetric group, the Hermite normal form of an integer matrix, the LLL algorithm for lattice basis reduction, and the Chinese remainder theorem. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper we construct two free field realizations of the elliptic affine Lie algebra sl(2, R) circle plus Omega(R)/dR where R = C[t. t(-1), u vertical bar u(2) = t(3) - 2bt(2) + t]. The first realization provides an analogue of Wakimoto`s construction for Affine Kac-Moody algebras, but in the setting of the elliptic affine Lie algebra. The second realization gives new types of representations analogous to Imaginary Verma modules in the Affine setting. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Let A be an Artin algebra and mod A be the category of finitely generated right A-modules. We prove that an additive full subcategory C of mod A closed under predecessors is contravariantly finite if and only if its right Ext-orthogonal is covariantly finite, or if and only if the Ext-injectives in C define a cotilting module (over the support algebra of C) or, equivalently, if and only if C is the support of the representable functors given by the Ext-injectives. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
One may construct, for any function on the integers, an irreducible module of level zero for affine sl(2) using the values of the function as structure constants. The modules constructed using exponential-polynomial functions realize the irreducible modules with finite-dimensional weight spaces in the category (O) over tilde of Chari. In this work, an expression for the formal character of such a module is derived using the highest weight theory of truncations of the loop algebra.