74 resultados para Sensor solution
Resumo:
The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work a new method for crosslinking ultra-thin films with potential applications in sensor systems is proposed. The films were produced by layer-by-layer (LbL) assembly using a conducting polymer, poly(o-ethoxyaniline) (POEA), alternated with a thermosetting resin, novolac-type phenolformaldehyde (PF), crosslinked by a simple thermal treatment. The PF resin served as both alternating and crosslinking agents. The films were characterized by Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy, thermogravimetry (TG), desorption, doping/dedoping cycling and electrical measurements. The results showed that film architecture and crosslinking degree can be controlled by the conditions used for film deposition (number of bilayers, polymer concentration, pH, and deposition time), and crosslinking time. Moreover, this approach offers several advantages such as fast curing time and low cost, indicating that these films can be used to produce sensors with improved stability.
Resumo:
The present work reports the thermal annealing process, the number of layer and electrochemical process effect in the optical response quality of Bragg and microcavity devices that were applied as organic solvent sensors. These devices have been obtained by using porous silicon (PS) technology. The optical characterization of the Bragg reflector, before annealing, showed a broad photonic band-gap structure with blue shifted and narrowed after annealing process. The electrochemical process used to obtain the PS-based device imposes the limit in the number of layers because of the chemical dissolution effect. The interface roughness minimizations in the devices have been achieved by using the double electrochemical cell setup. The microcavity devices showed to have a good sensibility for organic solvent detection. The thermal annealed device showed better sensibility feature and this result was attributed to passivation of the surface devices. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the design and implementation of an embedded soft sensor, i. e., a generic and autonomous hardware module, which can be applied to many complex plants, wherein a certain variable cannot be directly measured. It is implemented based on a fuzzy identification algorithm called ""Limited Rules"", employed to model continuous nonlinear processes. The fuzzy model has a Takagi-Sugeno-Kang structure and the premise parameters are defined based on the Fuzzy C-Means (FCM) clustering algorithm. The firmware contains the soft sensor and it runs online, estimating the target variable from other available variables. Tests have been performed using a simulated pH neutralization plant. The results of the embedded soft sensor have been considered satisfactory. A complete embedded inferential control system is also presented, including a soft sensor and a PID controller. (c) 2007, ISA. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report here the observation, for the first time, of the enhancement of Europium-Tetracycline complex emission in cholesterol solutions. This enhancement was initially observed with the addition of the enzyme cholesterol oxidase, which produces H2O2, the agent driver of the Europium tetracycline complex, to the solution. However, it was found that the enzyme is not needed to enhance the luminescence. A calibration curve was determined, resulting in a simple method to measure the cholesterol quantity in a solution. This method shows that the complex can be used as a sensor to determine cholesterol in biological systems.
Resumo:
Based on physical laws of similarity, an analytic solution of the soil water potential form of the Richards equation was derived for water infiltration into a homogeneous sand. The derivation assumes a similarity between the soil water retention function and that of the soil water content profiles taken at fixed times. The new solution successfully described soil water content profiles experimentally measured for water infiltrating downward, upward, and horizontally into a homogeneous sand and agrees with that presented by Philip in 1957. The utility of this analysis is still to be verified, but it is expected to hold for soils that have a narrow pore-size distribution before wetting and that manifest a sharp increase of water content at the wetting front during infiltration. The effect of van Genuchten`s parameters alpha and n on the application of the solution to other porous media was investigated. The solution also improves and provides a more realistic description of the infiltration process than that pioneered by Green and Ampt in 1911.
Resumo:
The use of the Boltzmann transform function, lambda(theta), to solve the Richards equation when the diffusivity, D, is a function of only soil water content,., is now commonplace in the literature. Nevertheless, a new analytic solution of the Boltzmann transform lambda(h) as a function of matric potential for horizontal water infiltration into a sand was derived without invoking the concept or use of D(theta). The derivation assumes that a similarity exists between the soil water retention function and the Boltzmann transform lambda(theta). The solution successfully described soil water content profiles experimentally measured for different infiltration times into a homogeneous sand and agrees with those presented by Philip in 1955 and 1957. The applicability of this solution for all soils remains open, but it is anticipated to hold for soils whose air-filled pore-size distribution before wetting is sufficiently narrow to yield a sharp increase of water content at the wetting front during infiltration. It also improves and provides a versatile alternative to the well-known analysis pioneered by Green and Ampt in 1911.
Resumo:
The increased use of marginal quality water with drip irrigation requires sound fertigation practices that reconcile environmental concerns with viable crop production objectives. We conducted experiments to characterize dynamics and patterns of soil solution within wet bulb formed by drip irrigation. Time-domain reflectometry probes were used to monitor the distribution of potassium nitrate (KNO(3)) and water distribution from drippers discharging at constant flow rates of 2, 4 and 8 L h(-1) in soil-filled containers. Considering results from different profiles, we observed greater solute storage near the dripper decreasing gradually towards the wetting front. About half of the applied KNO(3) solution (48%) was stored in the first layer (0-0.10 m) for all experiments, 29% was stored in the next layer (0.10-0.20 m). Comparing different dripper flow rates, we observed higher solution storage for 4 L h(-1), with 45, 53 and 47% of applied KNO(3) solution accumulating in the first layer (0-0.10 m) for dripper flow rates of 2, 4 and 8 L h(-1), respectively. The results suggest that based on the volume and frequency used in this experiment, it would be advantageous to apply small amounts of solution at more frequent intervals to reduce deep percolation losses of applied water and solutes.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
The photochemical behavior of [Ru(NO)(NO)(2)pc] (pc = phthalocyanine) is reported in this paper. In addition to ligand localized absorption bands (lambda < 300 nm), the electronic spectrum of this complex in dichloromethane solution was dominated by an intense absorption at 640 nm characterized as Q-bands. Irradiation of [Ru(NO)(NO)(2)pc] at 366 and 660 nm led to the production of nitric oxide (NO) as detected by a NO-sensor. NO production by light irradiation at high energy involved excitation of d(pi)-pi* transition, while a photoinduced electron transfer occurred at long wavelength irradiation. The NO quantum yields varied from 1.4 x 10(-3) to 2.3 x 10(-2) mol einstein(-1), depending on oxygen concentration. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work describes the synthesis in Solution of a series of related diketopiperazines with potential biological activities: cyclo(L-Pro-L-Ser), cyclo(L-Phe-L-Ser), cyclo(D-Phe-L-Ser) and the corresponding glycosylated analogs of the latter, cyclo[D-Phe-L-Ser(alpha GlcNAc)] and cyclo[D-Phe-L-Ser(beta GlcNAc)]. The synthetic approach involved coupling reactions of -OH or O-glycosylated serine benzyl esters with NFmoc-protected amino acids (Pro or Phe), followed by one-pot deprotection-cyclization reaction in the presence of 20% piperidine in DMF. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Stability of matchings was proved to be a new cooperative equilibrium concept in Sotomayor (Dynamics and equilibrium: essays in honor to D. Gale, 1992). That paper introduces the innovation of treating as multi-dimensional the payoff of a player with a quota greater than one. This is done for the many-to-many matching model with additively separable utilities, for which the stability concept is defined. It is then proved, via linear programming, that the set of stable outcomes is nonempty and it may be strictly bigger than the set of dual solutions and strictly smaller than the core. The present paper defines a general concept of stability and shows that this concept is a natural solution concept, stronger than the core concept, for a much more general coalitional game than a matching game. Instead of mutual agreements inside partnerships, the players are allowed to make collective agreements inside coalitions of any size and to distribute his labor among them. A collective agreement determines the level of labor at which the coalition operates and the division, among its members, of the income generated by the coalition. An allocation specifies a set of collective agreements for each player.
Resumo:
In a decentralized setting the game-theoretical predictions are that only strong blockings are allowed to rupture the structure of a matching. This paper argues that, under indifferences, also weak blockings should be considered when these blockings come from the grand coalition. This solution concept requires stability plus Pareto optimality. A characterization of the set of Pareto-stable matchings for the roommate and the marriage models is provided in terms of individually rational matchings whose blocking pairs, if any, are formed with unmatched agents. These matchings always exist and give an economic intuition on how blocking can be done by non-trading agents, so that the transactions need not be undone as agents reach the set of stable matchings. Some properties of the Pareto-stable matchings shared by the Marriage and Roommate models are obtained.
Resumo:
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(center dot-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q + 15](-) was described as being a reaction between the solvent system and the radical anion, Q(center dot-).The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.
Resumo:
Background: Calcium is one of the triggers involved in ischemic neuronal death. Because hypotension is a strong predictor of outcome in traumatic brain injury (TBI), we tested the hypothesis that early fluid resuscitation blunts calcium influx in hemorrhagic shock associated to TBI. Methods: Fifteen ketamine-halothane anesthetized mongrel dogs (18.7 kg +/- 1.4 kg) underwent unilateral cryogenic brain injury. Blood was shed in 5 minutes to a target mean arterial pressure of 40 mm Hg to 45 mm Hg and maintained at these levels for 20 minutes (shed blood volume = 26 mL/kg +/- 7 mL/kg). Animals were then randomized into three groups: CT (controls, no fluid resuscitation), HS (7.5% NaCl, 4 mL/kg, in 5 minutes), and LR (lactate Ringer`s, 33 mL/kg, in 15 minutes). Twenty minutes later, a craniotomy was performed and cerebral biopsies were obtained next to the lesion (""clinical penumbra"") and from the corresponding contralateral side (""lesion`s mirror"") to determine intracellular calcium by fluorescence signals of Fura-2-loaded cells. Results: Controls remained hypotensive and in a low-flow state, whereas fluid resuscitation improved hemodynamic profile. There was a significant increase in intracellular calcium in the injured hemisphere in CT (1035 nM +/- 782 nM), compared with both HS (457 nM +/- 149 nM, p = 0.028) and LR (392 nM +/- 178 nM, p = 0.017), with no differences between HS and LR (p = 0.38). Intracellular calcium at the contralateral, uninjured hemisphere was 438 nM +/- 192 nM in CT, 510 nM +/- 196 nM in HS, and 311 nM +/- 51 nM in LR, with no significant differences between them. Conclusion: Both small volume hypertonic saline and large volume lactated Ringer`s blunts calcium influx in early stages of TBI associated to hemorrhagic shock. No fluid resuscitation strategy promotes calcium influx and further neural damage.