145 resultados para Innate Immune-Responses
Resumo:
OBJECTIVE: To evaluate the influence of lactic acid on immune mediator release from vaginal epithelial cells. METHODS: The human vaginal epithelial cell line, VK2/E6E7, was cultured in the presence or absence of physiological concentrations of lactic acid, and in the presence or absence of the viral Toll-like receptor 3 agonist, poly (inosinic acid: cytidylic acid). Supernatants were assayed by enzyme-linked immunosorbent assay (ELISA) for interleukin (IL)-1 beta, IL-6, IL-8, IL-23, transforming growth factor (TGF)-beta and secretory leukocyte protease inhibitor. RESULTS: Vaginal epithelial cells spontaneously released IL-1 beta (25.9 pg/mL), IL-8 (1.0 ng/mL), TGF-beta (175 pg/mL), and secretory leukocyte protease inhibitor (33.8 ng/mL). Only TGF-beta production was marginally enhanced (49%) by addition of lactic acid alone. Poly (inosinic acid: cytidylic acid) by itself stimulated the release of IL-6 (305 pg/mL) and enhanced IL-8 production (2.8 ng/mL). The combination of poly (inosinic acid: cytidylic acid) and lactic acid markedly increased IL-8 production (5.0 ng/mL) and induced the release of IL-1 beta (96.2 pg/mL). The poly (inosinic acid: cytidylic acid)-mediated lactic acid effect on IL-1 beta and IL-8 release was abrogated when the lactic acid was neutralized or if acetic acid was substituted for lactic acid. CONCLUSION: Lactic acid enhances the release of selective mediators from vaginal epithelial cells and stimulates antiviral immune responses. (Obstet Gynecol 2011;118:840-6) DOI: 10.1097/AOG.0b013e31822da9e9
Resumo:
Purpose: Animal models of diseases are extremely important in the study of the physiopathogenesis of human diseases and for testing novel therapeutic interventions. The present study aimed to develop an animal model that simulates human allergic conjunctivitis and to study how allergic response may be influenced by the allergen dose used for immunization and by genetic factors. Methods: Sixty C57Bl/6 mice and 60 BALB/c mice were immunized with placebo, or 5 mu g or 500 mu g of allergen derived from Dermatophagoides pteronyssinus. After ocular challenge, the mice were examined in order to clinically verify the occurrence or not of conjunctivitis. Material obtained from animals was used for total and specific IgE and IgG1 dosage, for assays of Der p-specific lymphocyte proliferation and supernatant cytokine dosage, and for histopathological evaluation of conjunctiva. Results: We developed a murine model of allergic conjunctivitis induced by D. pteronyssinus. The model is similar to human disease both clinically and according to laboratory findings. In mouse, conjunctivitis was associated with a Th2 cytokine profile. However, IL-10 appeared to be involved with disease blockade. Mice of different strains have distinct immune responses, depending on the sensitization dose. Conclusions: The murine model developed is suitable for the study of immunopathogenesis and as a template for future therapies. Using BALB/c and C57BL/6 mice, we demonstrated that genetic factors play a role in determining susceptibility and resistance, as well as in establishing the allergen concentration needed to induce or to block disease development.
Resumo:
Rheumatic fever (RF) is an autoimmune disease caused by the gram-positive bacteria Streptococcus pyogenes that follows a nontreated throat infection in susceptible children. The disease manifests as polyarthritis, carditis, chorea, erythema marginatum, and/or subcutaneous nodules. Carditis, the most serious complication, occurs in 30% to 45% of RF patients and leads to chronic rheumatic heart disease (RHD), which is characterized by progressive and permanent valvular lesions. In this review, we will focus on the genes that confer susceptibility for developing the disease, as well as the innate and adaptive immune responses against S. pyogenes during the acute rheumatic fever episode that leads to RHD autoimmune reactions. The disease is genetically determined, and some human leukocyte antigen class II alleles are involved with susceptibility. Other single nucleotide polymorphisms for TNF-alpha and mannan-binding lectin genes were reported as associated with RF/RHD. T cells play an important role in RHD heart lesions. Several autoantigens were already identified, including cardiac myosin epitopes, vimentin, and other intracellular proteins. In the heart tissue, antigen-driven oligoclonal T cell expansions were probably the effectors of the rheumatic heart lesions. These cells are CD4(+) and produced inflammatory cytokines (TNF alpha and IFN gamma). Molecular mimicry is the mechanism that mediated the cross-reactions between streptococcal antigens and human proteins. The elucidation of chemokines and their receptors involved with the recruitment of Th1, Th2, and Th17 cells, as well as the function of T regulatory cells in situ will certainly contribute to the delineation of the real picture of the heart lesion process that leads to RHD.
Resumo:
Leishmania (Viannia) shawl was recently characterized and few studies concerning modifications in cellular and humoral immune responses in experimental leishmaniasis have been conducted. In this work, immunopathological changes induced by L. shawl in chronically infected BALB/c mice were investigated. Infected BALB/c mice developed increased lesion size associated with strong inflammatory infiltrate diffusely distributed in the dermis, with highly infected macrophages. The humoral immune response was predominantly directed toward the IgG1 isotype. The functional activity of CD4(+) and CD8(+) T cells showed significantly increased TNF-alpha mRNA levels associated with reduced IFN-gamma expression by CD4(+) T cells and the double negative (dn) CD4CD8 cell subset. High IL-4 levels expressed by CD8(+) T cells and dnCD4CD8 and TGF-beta by CD4(+) and CD8(+) T cells were detected, while IL-10 was highly expressed by all three cell subpopulations. Taken together, these results show an evident imbalance between TNF-alpha and IFN-gamma that is unfavorable to amastigote replication control. Furthermore, L. shawi seems to regulate different cell populations to express deactivating cytokines to avoid its own destruction. This study indicates BALB/c mice as a potentially good experimental model for further studies on American cutaneous leishmaniosis caused by L. shawi. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Dendritic cells (DCs)-based vaccine was demonstrated to increase HIV specific cellular immune response; however, in some HIV-infected patients, the response to the vaccine resulted to be not effective. In order to understand if the outcome of the vaccination may be influenced by the host`s genome and natural immunity, we studied the innate immune genome of HIV-infected patients previously vaccinated with DCs. We identified 15 SNPs potentially associated with the response to the immuno-treatment and two SNPs significantly associated with the modulation of the response to the DC vaccine: MBL2 rs10824792 and NOS1 rs693534. These two SNPs were also studied in different ethnic groups (Brazilians, African and Caucasian) of HIV-infected, exposed uninfected and unexposed uninfected subjects. The HIV positive Caucasian patients were also characterized by different disease progressions. Our findings suggest that, independently and/or in addition to other variables. the host`s genome could significantly contribute to the modulation of the response to the DC vaccine. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.
Resumo:
Human papillomavirus (HPV) infection is etiologically associated with low-(LSIL) and high-grade squamous intraepithelial lesions (HSIL) and with cervical cancer. The progression or regression of the lesions may depend, among other factors, on the host heritable immune response. Because human leukocyte antigen (HLA)-G molecules are involved in the modulation of innate and adaptive immune responses, and because no previous studies have evaluated HLA-G polymorphism in patients with SIL, we conducted a study to assess the association between HLA-G polymorphisms and cervical lesions harboring HPV infection. Cervico-vaginal scrapings and blood samples were collected from 125 women with SIL (68 LSIL and 57 HSIL) and from 94 healthy women without HPV infection and cytological abnormalities. HPV type and HLA-G polymorphisms in exons 2, 3 and 8 (14 bp insertion/deletion) were evaluated by PCR methodology, and digested with restriction endonucleases. The Genepop software and the EM and PHASE algorithms were used for statistical analysis. A significant protective association was observed between the presence of the G*0103 allele and SIL and between the G0101/G0104 genotype and HSIL in the group of patients compared to control. The presence of the G0104/+14 bp and G0104/-14 bp haplotypes conferred susceptibility to SIL compared to control. In addition, patients possessing the G0104/+14 bp haplotype and harboring HPV-16 and -18 co-infections were particularly associated with HSIL. These findings suggest that HLA-G polymorphisms may be associated with HPV infection and SIL, consequently representing a profile of predisposition to cervical cancer. Modern Pathology (2009) 22, 1075-1082; doi: 10.1038/modpathol.2009.67; published online 1 May 2009
Resumo:
Sepsis is still a major cause of mortality in the intensive critical care unit and results from an overwhelming immune response to the infection. TNF signaling pathway plays a central role in the activation of innate immunity in response to pathogens. Using a model of polymicrobial sepsis by i.p. injection of cecal microflora, we demonstrate a critical role of TNFR1 and R2 activation in the deregulated immune responses and death associated with sepsis. A large and persistent production of TNF was found in wild-type (B6) mice. TNFR1/R2-deficient mice, compared with B6 mice, survive lethal polymicrobial infection with enhanced neutrophil recruitment and bacterial clearance in the peritoneal cavity. Absence of TNFR signaling leads to a decreased local and systemic inflammatory response with diminished organ injury. Furthermore, using TNFR1/R2-deficient mice, TNF was found to be responsible for a decrease in CXCR2 expression, explaining reduced neutrophil extravasation and migration to the infectious site, and in neutrophil apoptosis. In line with the clinical experience, administration of Enbrel, a TNF-neutralizing protein, induced however only a partial protection in B6 mice, with no improvement of clinical settings, suggesting that future TNF immunomodulatory strategies should target TNFR1 and R2. In conclusion, the present data suggest that the endogenous TNFR1/R2 signaling pathway in polymicrobial sepsis reduces neutrophil recruitment contributing to mortality and as opposed to pan-TNF blockade is an important therapeutic target for the treatment of polymicrobial sepsis. The Journal of Immunology, 2009, 182: 7855-7864.
Resumo:
In this study, we have addressed the role of H2S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H S synthesis inhibitors, DL-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H2S donors, NaHS or Lawesson`s reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB4. Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K-ATP(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K-ATP(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H`S augments neutrophil adhesion and locomotion, by a mechanism dependent on K-ATP(+) channels.
Resumo:
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host`s local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick`s blood meal. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Injury triggers inflammatory responses and tissue repair. Several treatments are currently in use to accelerate healing: however, more efficient formulations are still needed for specific injuries. Since unsaturated fatty acids modulate immune responses, we aimed to evaluate their therapeutic effects on wound healing. Skin wounds were induced in BALB/c mice and treated for 5 days with n-3, n-9 fatty acids or vehicle (control). n-9 treated mice presented smaller wounds than control and n-3 at 120 h post-surgery (p.s.). Collagen III mRNA,TIMP1 and MMP9 were significantly elevated in n-9 group compared to n-3 or vehicle at 120 h p.s. Among the inflammatory mediators studied we found that IL-10, TNF-alpha and IL-17 were also higher in n-9 treated group compared to n-3 or vehicle at 120 h p.s. Interestingly, COX2 had decreased expression on wound tissue treated with n-9. Inflammatory infiltrate analysis revealed diminished frequency of CD4(+), CD8(+) and CD11b(+) cells in n-9 wounds at 24 and 120 h p.s., which was not related to cell death, since in vitro apoptosis experiments did not show any cell damage after fatty acids administration. These results suggested that unsaturated fatty acids, specifically n-9, modulate the inflammation in the wound and enhance reparative response in vivo. n-9 may be a useful tool in the treatment of cutaneous wounds. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Neospora caninum is an apicomplexan parasite responsible for major economic losses due to abortions in cattle. Toll-like receptors (TLRs) sense specific microbial products and direct downstream signaling pathways in immune cells, linking innate, and adaptive immunity. Here, we analyze the role of TLR2 on innate and adaptive immune responses during N. caninum infection. Inflammatory peritoneal macrophages and bone marrow-derived dendritic cells exposed to N. caninum-soluble antigens presented an upregulated expression of TLR2. Increased receptor expression was correlated to TLR2/MyD88-dependent antigen-presenting cell maturation and pro-inflammatory cytokine production after stimulation by antigens. Impaired innate responses observed after infection of mice genetically deficient for TLR2((-/-)) was followed by downregulation of adaptive T helper 1 (Th1) immunity, represented by diminished parasite-specific CD4(+) and CD8(+) T-cell proliferation, IFN-gamma:interleukin (IL)-10 ratio, and IgG subclass synthesis. In parallel, TLR2(-/-) mice presented higher parasite burden than wild-type (WT) mice at acute and chronic stages of infection. These results show that initial recognition of N. caninum by TLR2 participates in the generation of effector immune responses against N. caninum and imply that the receptor may be a target for future prophylactic strategies against neosporosis. Immunology and Cell Biology (2010) 88, 825-833; doi:10.1038/icb.2010.52; published online 20 April 2010
Resumo:
Leptospirosis is a widespread re-emerging zoonosis of human and veterinary concern. It has been shown that virulent leptospires protect themselves against the host`s innate immune system, a strategy that allows the bacteria to reach immunologically safe environments. Although extensive studies on host pathogen interactions have been performed, little is known on how leptospires deal with host immune attack. In a previous work, we demonstrated the ability of leptospires to bind human plasminogen (PLC), that after treatment with activators, conferred plasmin (PLA) activity on the bacteria surface. In this study, we show that the PLA activity associated to the outer surface of Leptospira could interfere with the host immune attack by conferring some evasion advantage during infection. We demonstrate that PLA-coated leptospires interfere with complement Ob and IgG depositions on the bacterial surface, probably through the degradation of these components, thus diminishing opsonization process. Similar decrease on the deposition was observed when normal and immune sera from patients diagnosed with leptospirosis were employed as a source of IgG. We believe that decreasing opsonization by PLA generation might be an important aspect of the leptospiral immune escape strategy and survival. To our knowledge, this is the first proteolytic activity of plasmin associated-Leptospira related to anti-opsonic properties reported to date. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Synthetic type II pyrethroid insecticides, such as cyhalothrin at certain dosage levels, simultaneously induce stress-like symptoms and innate immunosuppressive effects in laboratory animals. The present study was designed to further analyze the stress-like effects induced by cyhalotrin and also investigate the role of Hypothalamus-Hypophysis-Adrenal (HHA) axis and Sympathetic Nervous Systems (SNS) and their effects on macrophage activity of rats. Results showed that cyhalothrin treatment (3.0 mg/kg/day. for 7 days) increased corticosterone serum levels and c-fos immunoreactivity at the paraventricular nucleus of the hypothalamus (PVN) but induced no changes in c-fos expression at the basolateral amygdala (BLA). Both areas were related to HHA axis and SNS activations by stress. Further analysis showed that adrenalectomy partially abrogated the suppression effects of cyhalothrin on macrophage activity and that 6-OHDA-induced peripheral symphatectyomy had no effects on this innate immune cell activity. The present observed data support and reinforce the notion that cyhalotrin at this treatment schedule induces stress-like symptoms and suggest that other factors, beyond indirect neuroadaptative responses, are necessary for the suppression effects of insecticide on innate immune response. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-alpha and ribavirin therapy. Major histocompatibility complex class I restricted CD8+ T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated alpha-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy.