108 resultados para GAINNAS ALLOYS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new criterion has been recently proposed combining the topological instability (lambda criterion) and the average electronegativity difference (Delta e) among the elements of an alloy to predict and select new glass-forming compositions. In the present work, this criterion (lambda.Delta e) is applied to the Al-Ni-La and Al-Ni-Gd ternary systems and its predictability is validated using literature data for both systems and additionally, using own experimental data for the Al-La-Ni system. The compositions with a high lambda.Delta e value found in each ternary system exhibit a very good correlation with the glass-forming ability of different alloys as indicated by their supercooled liquid regions (Delta T(x)) and their critical casting thicknesses. In the case of the Al-La-Ni system, the alloy with the largest lambda.Delta e value, La(56)Al(26.5)Ni(17.5), exhibits the highest glass-forming ability verified for this system. Therefore, the combined lambda.Delta e criterion is a simple and efficient tool to select new glass-forming compositions in Al-Ni-RE systems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563099]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was to experimentally investigate the thermal diffusivity of four different gray cast iron alloys, regularly used to produce brake disks for automotive vehicles. Thermal diffusivity measurements were performed at temperatures ranging from room temperature to 600 A degrees C. The influence of the thermal conductivity on the thermomechanical fatigue life is also briefly presented. The measurements were sensitive to the influence of the carbon equivalent and alloying elements, such as molybdenum, copper and chromium. Molybdenum, unlike copper, lowered the thermal diffusivity of the gray cast iron, and alloy E (without molybdenum), besides presenting a relatively low carbon equivalent content and an increase in the values of the thermal diffusivity, presented the best performance during the thermomechanical fatigue. The molybdenum present in alloys B and C did not fulfill the expectations of providing the best thermomechanical fatigue behavior. Consequently, its elimination in the gray cast iron alloy for this application will result in a significant economy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel-based super alloys are used in a variety of applications in which high-temperature strength and resistance to creep, corrosion, and oxidation are required, such as in aircraft gas turbines, combustion chambers, and automotive engine valves. The properties that make these materials suitable for these applications also make them difficult to grind. Grinding systems for such materials are often built around vitrified cBN (cubic boron nitride) wheels to realize maximum productivity and minimum cost per part. Conditions that yield the most economical combination of stock removal rate and wheel wear are key to the successful implementation of the grinding system. Identifying the transition point for excessive wheel wear is important. The aim of this study is to compare the performance of different cBN wheels when grinding difficult-to-grind (DTG) materials by determining the 'wheel wear characteristic curve', which correlates the G-ratio to the calculated tangential force per abrasive grain. With the proposed methodology, a threshold force per grit above which the wheel wear rate increases rapidly can be quickly identified. A comparison of performance for two abrasive product formulations in the grinding of three materials is presented. The obtained results can be applied for the development of grinding applications for DTG materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermodynamics properties of ferropericlase (Mg(1-x)Fe(x)O where x=0.1875) (Fp) throughout its spin crossover were investigated by first principles. Fp was treated as an ideal solid solution of pure high-spin and low-spin states. The Gibbs free energies of the pure states were addressed using the LDA+U method. A vibrational virtual-crystal model was developed to address the vibrational properties of the pure spin cases and used in conjunction with quasiharmonic theory to compute their vibrational free energies. The thermodynamics properties of Fp display significant anomalies that should be typical of spin crossover systems in general. In Fp, in particular, they are fundamental for understanding the state of earth's interior, where the pressure and temperature conditions of the crossover are realized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron mobility was studied in lattice-matched short-period InGaAs/InP superlattices as a function of the width of the wells. The decreasing mobility with decreasing well width was shown to occur due to the interface roughness. The roughnesses of InGaAs/InP and GaAs/AlGaAs interfaces were compared. Much smoother InGaAs/InP interfaces resulted in higher electron mobility limited by interface roughness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoluminescence (PL) technique as a function of temperature and excitation intensity was used to study the optical properties of multiquantum wells (MQWs) of GaAs/Al(x)Ga(1-x)As grown by molecular beam epitaxy on GaAs substrates oriented in the [100], [311]A, and [311]B directions. The asymmetry presented by the PL spectra of the MQWs with an apparent exponential tail in the lower-energy side and the unusual behavior of the PL peak energy versus temperature (blueshift) at low temperatures are explained by the exciton localization in the confinement potential fluctuations of the heterostructures. The PL peak energy dependence with temperature was fitted by the expression proposed by Passler [Phys. Status Solidi B 200, 155 (1997)] by subtracting the term sigma(2)(E)/k(B)T, which considers the presence of potential fluctuations. It can be verified from the PL line shape, the full width at half maximum of PL spectra, the sigma(E) values obtained from the adjustment of experimental points, and the blueshift maximum values that the samples grown in the [311]A/B directions have higher potential fluctuation amplitude than the sample grown in the [100] direction. This indicates a higher degree of the superficial corrugations for the MQWs grown in the [311] direction. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The successful measurements of a sublattice magnetism with (51)V NMR techniques in the sigma-phase Fe(100-x)V(x) alloys with x=34.4, 39.9, and 47.9 are reported. Vanadium atoms, which were revealed to be present on all five crystallographic sites, are found to be under the action of the hyperfine magnetic fields produced by the neighboring Fe atoms, which allow the observation of (51)V NMR signals. Their nuclear magnetic properties are characteristic of a given site, which strongly depend on the composition. Site A exhibits the strongest magnetism while site D is the weakest. The estimated average magnetic moment per V atom decreases from 0.36 mu(B) for x=34.4 to 0.20 mu(B) for x=47.9. The magnetism revealed at V atoms is linearly correlated with the magnetic moment of Fe atoms, which implies that the former is induced by the latter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical renormalization-group study of the conductance through a quantum wire containing noninteracting electrons side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of the conductance are examined in the light of a recently derived linear mapping between the temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown to control the current through the bypass. When the potential favors transport through the wire, the conductance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures. When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero. When comparable currents flow through the two channels, the conductance is nearly temperature independent in the Kondo regime, and Fano antiresonances in the fixed-temperature plots of the conductance as a function of the dot-energy signal interference between them. Throughout the Kondo regime and, at low temperatures, even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal dependence of the zero-bias conductance for the single electron transistor is the target of two independent renormalization-group approaches, both based on the spin-degenerate Anderson impurity model. The first approach, an analytical derivation, maps the Kondo-regime conductance onto the universal conductance function for the particle-hole symmetric model. Linear, the mapping is parametrized by the Kondo temperature and the charge in the Kondo cloud. The second approach, a numerical renormalization-group computation of the conductance as a function the temperature and applied gate voltages offers a comprehensive view of zero-bias charge transport through the device. The first approach is exact in the Kondo regime; the second, essentially exact throughout the parametric space of the model. For illustrative purposes, conductance curves resulting from the two approaches are compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diluted magnetic semiconductors are promising materials for spintronic applications. Usually one intents to find the ferromagnetic state but recently the antiferromagnetism (AFM) was proposed to have some advantages. In this work, we verify the possibility to obtain spin polarization with an AFM state. In particular, we studied GaN 5% double doped with two different transition metals atoms (Mn and Co or Cr and Ni), forming the Mn(x)Co(0.056-x)Ga(0.944)N and Cr(x)Ni(0.056-x)Ga(0.944)N quaternary alloys. In order to simulate these systems in a more realistic way, and take into account composition fluctuations, we adapted the generalized quasichemical approach to diluted alloys, which is used in combination with spin density-functional theory. We find that is possible to obtain an AFM ground state up to 70% spin polarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the preparation of a Pt-Rh alloy surface electrodeposited on Pt electrodes and its electrocatalytic characterization for methanol oxidation. The X-ray photoelectronic spectroscopy ( XPS) results demonstrate that the surface composition is approximately 24 at-% Rh and 76 % Pt. The cyclic voltammetry (CV) and electrochemical quartz crystal (EQCN) results for the alloy were associated, for platinum, to the well known profile in acidic medium. For Rh, on the alloy, the generation of rhodium hydroxide species (Rh(OH)(3) and RhO(OH)(3)) was measured. During the successive oxidation-reduction cycles the mass returns to its original value, indicating the reversibility of the processes. It was not observed rhodium dissolution during the cycling. The 76/24 at % Pt-Rh alloy presented singular electrocatalytic activity for methanol electrooxidation, which started at more negative potentials compared to pure Pt (70 mV). During the sweep towards more negative potentials, there is only weak CO re-adsorption on both Rh and Pt-Rh alloy surfaces, which can be explained by considering the interaction energy between Rh and CO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel flow-based strategy for implementing simultaneous determinations of different chemical species reacting with the same reagent(s) at different rates is proposed and applied to the spectrophotometric catalytic determination of iron and vanadium in Fe-V alloys. The method relies on the influence of Fe(II) and V(IV) on the rate of the iodide oxidation by Cr(VI) under acidic conditions, the Jones reducing agent is then needed Three different plugs of the sample are sequentially inserted into an acidic KI reagent carrier stream, and a confluent Cr(VI) solution is added downstream Overlap between the inserted plugs leads to a complex sample zone with several regions of maximal and minimal absorbance values. Measurements performed on these regions reveal the different degrees of reaction development and tend to be more precise Data are treated by multivariate calibration involving the PLS algorithm The proposed system is very simple and rugged Two latent variables carried out ca 95% of the analytical information and the results are in agreement with ICP-OES. (C) 2010 Elsevier B V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of deformation properties of low carbon steels is of particular interest because of their many technological applications. Obtaining fine grained Fe based materials can be approached by one of the several available Severe Plastic Deformation (SPD) techniques. The current paper shows experimental data and simulations of the deformation process of iron samples by Equal Channel Angular Extrusion (ECAE). The samples were extruded in a 120 degrees channel die either by one or a few passes. The heterogeneity and local development of the deformation on the elbow of the channel has been studied by X-ray measuring and simulation of the texture evolution. The Self Consistent models used for simulation allowed the calculation of the spin of the main texture components which agreed pretty well with the experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This investigation presents a comprehensive characterization of magnetic and transport properties of an interesting superconducting wire, Nb-Ti -Ta, obtained through the solid-state diffusion between Nb-12 at.% Ta alloy and pure Ti. The physical properties obtained from magnetic and transport measurements related to the microstructure unambiguously confirmed a previous proposition that the superconducting currents flow in the center of the diffusion layer, which has a steep composition variation. The determination of the critical field also confirmed that the flux line core size is not constant, and in addition it was possible to determine that, in the center of the layer, the flux line core is smaller than at the borders. A possible core shape design is proposed. Among the wires studied, the one that presented the best critical current density was achieved for a diffusion layer with a composition of about Nb-32% Ti-10% Ta, obtained with a heat treatment at 700 degrees C during 120 h, in agreement with previous studies. It was determined that this wire has the higher upper critical field, indicating that the optimization of the superconducting behavior is related to an intrinsic property of the ternary alloy.