113 resultados para Diseases Classification
Resumo:
Background: Dermatomyositis (DM) and polymyositis (PM) are rare systemic autoimmune rheumatic diseases with high fatality rates. There have been few population-based mortality studies of dermatomyositis and polymyositis in the world, and none have been conducted in Brazil. The objective of the present study was to employ multiple-cause of-death methodology in the analysis of trends in mortality related to dermatomyositis and polymyositis in the state of Sao Paulo, Brazil, between 1985 and 2007. Methods: We analyzed mortality data from the Sao Paulo State Data Analysis System, selecting all death certificates on which DM or PM was listed as a cause of death. The variables sex, age and underlying, associated or total mentions of causes of death were studied using mortality rates, proportions and historical trends. Statistical analysis were performed by chi-square and H Kruskal-Wallis tests, variance analysis and linear regression. A p value less than 0.05 was regarded as significant. Results: Over a 23-year period, there were 318 DM-related deaths and 316 PM-related deaths. Overall, DM/PM was designated as an underlying cause in 55.2% and as an associated cause in 44.8%; among 634 total deaths females accounted for 71.5%. During the study period, age-and gender-adjusted DM mortality rates did not change significantly, although PM as an underlying cause and total mentions of PM trended lower (p < 0.05). The mean ages at death were 47.76 +/- 20.81 years for DM and 54.24 +/- 17.94 years for PM (p = 0.0003). For DM/PM, respectively, as underlying causes, the principal associated causes of death were as follows: pneumonia (in 43.8%/33.5%); respiratory failure (in 34.4%/32.3%); interstitial pulmonary diseases and other pulmonary conditions (in 28.9%/17.6%); and septicemia (in 22.8%/15.9%). For DM/PM, respectively, as associated causes, the following were the principal underlying causes of death: respiratory disorders (in 28.3%/26.0%); circulatory disorders (in 17.4%/20.5%); neoplasms (in 16.7%/13.7%); infectious and parasitic diseases (in 11.6%/9.6%); and gastrointestinal disorders (in 8.0%/4.8%). Of the 318 DM-related deaths, 36 involved neoplasms, compared with 20 of the 316 PM-related deaths (p = 0.03). Conclusions: Our study using multiple cause of deaths found that DM/PM were identified as the underlying cause of death in only 55.2% of the deaths, indicating that both diseases were underestimated in the primary mortality statistics. We observed a predominance of deaths in women and in older individuals, as well as a trend toward stability in the mortality rates. We have confirmed that the risk of death is greater when either disease is accompanied by neoplasm, albeit to lesser degree in individuals with PM. The investigation of the underlying and associated causes of death related to DM/PM broaden the knowledge of the natural history of both diseases and could help integrate mortality data for use in the evaluation of control measures for DM/PM.
Resumo:
Aims. In this work, we describe the pipeline for the fast supervised classification of light curves observed by the CoRoT exoplanet CCDs. We present the classification results obtained for the first four measured fields, which represent a one-year in-orbit operation. Methods. The basis of the adopted supervised classification methodology has been described in detail in a previous paper, as is its application to the OGLE database. Here, we present the modifications of the algorithms and of the training set to optimize the performance when applied to the CoRoT data. Results. Classification results are presented for the observed fields IRa01, SRc01, LRc01, and LRa01 of the CoRoT mission. Statistics on the number of variables and the number of objects per class are given and typical light curves of high-probability candidates are shown. We also report on new stellar variability types discovered in the CoRoT data. The full classification results are publicly available.
Resumo:
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.
Resumo:
The problem of semialgebraic Lipschitz classification of quasihomogeneous polynomials on a Holder triangle is studied. For this problem, the ""moduli"" are described completely in certain combinatorial terms.
Resumo:
Quality control of toys for avoiding children exposure to potentially toxic elements is of utmost relevance and it is a common requirement in national and/or international norms for health and safety reasons. Laser-induced breakdown spectroscopy (LIBS) was recently evaluated at authors` laboratory for direct analysis of plastic toys and one of the main difficulties for the determination of Cd. Cr and Pb was the variety of mixtures and types of polymers. As most norms rely on migration (lixiviation) protocols, chemometric classification models from LIBS spectra were tested for sampling toys that present potential risk of Cd, Cr and Pb contamination. The classification models were generated from the emission spectra of 51 polymeric toys and by using Partial Least Squares - Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogy (SIMCA) and K-Nearest Neighbor (KNN). The classification models and validations were carried out with 40 and 11 test samples, respectively. Best results were obtained when KNN was used, with corrected predictions varying from 95% for Cd to 100% for Cr and Pb. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Traditionally, chronotype classification is based on the Morningness-Eveningness Questionnaire (MEQ). It is implicit in the classification that intermediate individuals get intermediate scores to most of the MEQ questions. However, a small group of individuals has a different pattern of answers. In some questions, they answer as ""morning-types"" and in some others they answer as ""evening-types,"" resulting in an intermediate total score. ""Evening-type"" and ""Morning-type"" answers were set as A(1) and A(4), respectively. Intermediate answers were set as A(2) and A(3). The following algorithm was applied: Bimodality Index = (Sigma A(1) x Sigma A(4))(2) - (Sigma A(2) x Sigma A(3))(2). Neither-types that had positive bimodality scores were classified as bimodal. If our hypothesis is validated by objective data, an update of chronotype classification will be required. (Author correspondence: brunojm@ymail.com)
Resumo:
This study aimed to evaluate the effects of physical exercise on body weight reduction. For 12 weeks, 22 obese women (BMI>30 kg/m(2)) were submitted to a physical exercise program. At the beginning and at the final of the program there were evaluated: BMI, waist (WC) and hip circumferences (HC), and waist-hip ratio (WHR); body composition by DEXA; hemoglobin and erythroctye, total cholesterol, HDL and LDL, triacylglycerol and blood glucose; aerobic power. At the final of the program, aerobic power, hemoglobin and erythrocyte values were significantly increased, confirming the physical training effects. Related to anthropometric values, only the visceral fat (WC, HC and WHR) were reduced. The exercise shows to be an important supporting in the body weight loss program, not exactly promoting body weight loss, but lowering risk factors to develop chronic diseases.
Resumo:
Oropharyngeal dysphagia is characterized by any alteration in swallowing dynamics which may lead to malnutrition and aspiration pneumonia. Early diagnosis is crucial for the prognosis of patients with dysphagia, and the best method for swallowing dynamics assessment is swallowing videofluoroscopy, an exam performed with X-rays. Because it exposes patients to radiation, videofluoroscopy should not be performed frequently nor should it be prolonged. This study presents a non-invasive method for the pre-diagnosis of dysphagia based on the analysis of the swallowing acoustics, where the discrete wavelet transform plays an important role to increase sensitivity and specificity in the identification of dysphagic patients. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Despite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.
Resumo:
The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.
Resumo:
There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
A new digital computer mock circulatory system has been developed in order to replicate the physiologic and pathophysiologic characteristics of the human cardiovascular system. The computer performs the acquisition of pressure, flow, and temperature in an open loop system. A computer program has been developed in Labview programing environment to evaluate all these physical parameters. The acquisition system was composed of pressure, flow, and temperature sensors and also signal conditioning modules. In this study, some results of flow, cardiac frequencies, pressures, and temperature were evaluated according to physiologic ventricular states. The results were compared with literature data. In further works, performance investigations will be conducted on a ventricular assist device and endoprosthesis. Also, this device should allow for evaluation of several kinds of vascular diseases.
Resumo:
Objective To describe onset features, classification and treatment of juvenile dermatomyositis (JDM) and juvenile polymyositis (JPM) from a multicentre registry. Methods Inclusion criteria were onset age lower than 18 years and a diagnosis of any idiopathic inflammatory myopathy (IIM) by attending physician. Bohan & Peter (1975) criteria categorisation was established by a scoring algorithm to define JDM and JPM based oil clinical protocol data. Results Of the 189 cases included, 178 were classified as JDM, 9 as JPM (19.8: 1) and 2 did not fit the criteria; 6.9% had features of chronic arthritis and connective tissue disease overlap. Diagnosis classification agreement occurred in 66.1%. Medial? onset age was 7 years, median follow-up duration was 3.6 years. Malignancy was described in 2 (1.1%) cases. Muscle weakness occurred in 95.8%; heliotrope rash 83.5%; Gottron plaques 83.1%; 92% had at least one abnormal muscle enzyme result. Muscle biopsy performed in 74.6% was abnormal in 91.5% and electromyogram performed in 39.2% resulted abnormal in 93.2%. Logistic regression analysis was done in 66 cases with all parameters assessed and only aldolase resulted significant, as independent variable for definite JDM (OR=5.4, 95%CI 1.2-24.4, p=0.03). Regarding treatment, 97.9% received steroids; 72% had in addition at least one: methotrexate (75.7%), hydroxychloroquine (64.7%), cyclosporine A (20.6%), IV immunoglobulin (20.6%), azathioprine (10.3%) or cyclophosphamide (9.6%). In this series 24.3% developed calcinosis and mortality rate was 4.2%. Conclusion Evaluation of predefined criteria set for a valid diagnosis indicated aldolase as the most important parameter associated with de, methotrexate combination, was the most indicated treatment.
Resumo:
The purposes of this workwere to characterize postharvest injuries and to evaluate the physicochemical characteristics of`Nra` and `Lima`oranges and `Murcott` tangor at Ceagesp market, as well as to characterize the environmental mycoflora in retail points at Ceagesp in 2006. Fruits collected at retail points were stored for 14 days at 25 degrees C and 85-90% RH. The incidence of injuries was visually evaluated every three days. The physicochemical characteristics analyzed were titratable acidity and soluble solids amount. The environmental mycoflora was sampled according to the gravimetric method, using Petri dishes containing potato-dextrose-agar medium+pentabiotic opened for two minutes. The average rot incidences in `Pera` and `Lima` oranges and `Murcott` tangor were 12.8, 14.9 and 25.8%, respectively, at the end of the storage period, and green mold was the main postharvest disease. Associations between physicochemical parameters and rot incidence was, in general, not significant. The environmental fungal population varied significantly between the sampling months in retail points with an average of 25.3 cfu/plate. Penicillium and Cladosporium were the most recorded genera of fungi. Positive correlation (r=0.96) was observed between frequency of P digitatum found in the environment of retail points and the green mold in on-sale fruits of `Pera` orange. However, for `Lima` orange and `Murcott` tangor such a correlation was not verified.