97 resultados para CONDUCTION ELECTRONS
Resumo:
We report the first measurement of the parity-violating single-spin asymmetries for midrapidity decay positrons and electrons from W(+) and W(-) boson production in longitudinally polarized proton-proton collisions at root s = 500 GeV by the STAR experiment at RHIC. The measured asymmetries, A(L)(W+) = -0.27 +/- 0.10(stat.) +/- 0.02(syst.) +/- 0.03(norm.) and A(L)(W-) = 0.14 +/- 0.19(stat.) +/- 0.02(syst.) +/- 0.01(norm.), are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized deep-inelastic scattering measurements.
Resumo:
The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T).
Resumo:
The electron properties of artificially disordered superlattices embedded in a wide AlGaAs parabolic well were investigated in a strong magnetic field. We demonstrated that in the extreme quantum limit the interlayer disorder results in formation of a new correlated phase. A nearly uniform electron distribution over the superlattice wells was found in a weak magnetic field. However, a nonuniform phase with partially localized electrons, representing well-developed fractional quantum Hall effect features, was observed in high magnetic field (at the filling factor v < 1). A distinct magnetic field-induced transition separates these two phases. (C) 2011 American Institute of Physics. [doi:10.1063/1.3576134]
Resumo:
We report a study of dynamic effects detected in the time-resolved emission from quantum dot ensembles. Experimental procedures were developed to search for common behaviors found in quantum dot systems independently of their composition: three quantum dot samples were experimentally characterized. Systems with contrasting interdot coupling are compared and their sensitivity to the excitation energy is analyzed. Our experimental results are compared and contrasted with other results available in literature. The optical recombination time dependence on system parameters is derived and compared to the experimental findings. We discuss the effects of occupation of the ground state in both valence and conduction bands of semiconductor quantum dots in the dynamics of the system relaxation as well as the nonlinear effects.
Resumo:
A photoluminescence (PL) study of the individual electron states localized in a random potential is performed in artificially disordered superlattices embedded in a wide parabolic well. The valence band bowing of the parabolic potential provides a variation of the emission energies which splits the optical transitions corresponding to different wells within the random potential. The blueshift of the PL lines emitted by individual random wells, observed with increasing disorder strength, is demonstrated. The variation of temperature and magnetic field allowed for the behavior of the electrons localized in individual wells of the random potential to be distinguished.
Resumo:
The study of structures based on nonstoichiometric SnO(2-x) compounds, besides experimentally observed, is a challenging task taking into account their instabilities. In this paper, we report on single crystal Sn(3)O(4) nanobelts, which were successfully grown by a carbothermal evaporation process of SnO(2) powder in association with the well known vapor-solid mechanism. By combining the structural data and transport properties, the samples were investigated. The results showed a triclinic semiconductor structure with a fundamental gap of 2.9 eV. The semiconductor behavior was confirmed by the electron transport data, which pointed to the variable range hopping process as the main conduction mechanism, thus giving consistent support to the mechanisms underlying the observed semiconducting character.
Resumo:
The ground states of a few electrons confined in two vertically coupled quantum rings in the presence of an external magnetic field are studied systematically within the current spin-density functional theory. Electron-electron interactions combined with inter-ring tunneling affect the electronic structure and the persistent current. For small values of the external magnetic field, we recover the zero magnetic field molecular quantum ring ground state configurations. Increasing the magnetic field many angular momentum, spin, and isospin transitions are predicted to occur in the ground state. We show that these transitions follow certain rules, which are governed by the parity of the number of electrons, the single-particle picture, Hund's rules, and many-body effects. (C) 2009 American Institute of Physics. [doi:10.1063/1.3223360]
Resumo:
Deoxyribonucleic acid based gel solid electrolytes were prepared and their electric properties were characterized. Their ionic conductivity is in the range of 10(-4)-10(-5) S/cm at room temperature and increases linearly in function of temperature, obeying an Arrhenius-like relationship. The present study, combined with the literature data, suggests that the electrical conduction mechanism in these membranes involve ion motion and/or charge hopping, promoted most likely by a significant interaction between the membrane components. The good conductivity results, as found here, together with the good transparency and good adhesion to the electrodes show that the DNA-based gel polymer electrolytes are very promising materials for application in various electrochromic devices. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3610951]
Resumo:
The persistent current in two vertically coupled quantum rings containing few electrons is studied. We find that the Coulomb interaction between the rings in the absence of tunneling affects the persistent current in each ring and the ground-state configurations. Quantum tunneling between the rings alters significantly the ground state and the persistent current in the system.
Resumo:
The influence of interlayer coupling on the formation of the quantized Hall phase at the filling factor nu=2 was studied in multilayer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to localized electrons was found in the quantized Hall phase of the isolated multi-quanturn-well structure. On the other hand, the quantized Hall phase of weakly coupled multilayers emitted an unexpected asymmetrical line similar to that observed in metallic electron systems. We demonstrated that the observed asymmetry is caused by the partial population of extended electron states formed in the insulating quantized Hall phase due to spin-assisted interlayer percolation. A sharp decrease in the single-particle scattering time associated with these extended states was observed for the filling factor nu=2. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2978194]
Resumo:
We theoretically investigate negative differential resistance (NDR) for ballistic transport in semiconducting armchair graphene nanoribbon (aGNR) superlattices (5 to 20 barriers) at low bias voltages V(SD) < 500 mV. We combine the graphene Dirac Hamiltonian with the Landauer-Buttiker formalism to calculate the current I(SD) through the system. We find three distinct transport regimes in which NDR occurs: (i) a ""classical"" regime for wide layers, through which the transport across band gaps is strongly suppressed, leading to alternating regions of nearly unity and zero transmission probabilities as a function of V(SD) due to crossing of band gaps from different layers; (ii) a quantum regime dominated by superlattice miniband conduction, with current suppression arising from the misalignment of miniband states with increasing V(SD); and (iii) a Wannier-Stark ladder regime with current peaks occurring at the crossings of Wannier-Stark rungs from distinct ladders. We observe NDR at voltage biases as low as 10 mV with a high current density, making the aGNR superlattices attractive for device applications.
Resumo:
We investigate entanglement of strongly interacting fermions in spatially inhomogeneous environments. To quantify entanglement in the presence of spatial inhomogeneity, we propose a local-density approximation (LDA) to the entanglement entropy, and a nested LDA scheme to evaluate the entanglement entropy on inhomogeneous density profiles. These ideas are applied to models of electrons in superlattice structures with different modulation patterns, electrons in a metallic wire in the presence of impurities, and phase-separated states in harmonically confined many-fermion systems, such as electrons in quantum dots and atoms in optical traps. We find that the entanglement entropy of inhomogeneous systems is strikingly different from that of homogeneous systems.
Resumo:
We theoretically investigate spin-polarized transport in a system composed of a ferromagnetic scanning-tunneling-microscope (STM) tip coupled to an adsorbed atom (adatom) on a host surface. Electrons can tunnel directly from the tip to the surface or via the adatom. Since the tip is ferromagnetic and the host surface (metal or semiconductor) is nonmagnetic we obtain a spin-diode effect when the adatom is in the regime of single occupancy. This effect leads to an unpolarized current for direct bias (V > 0) and polarized current for reverse (V < 0) bias voltages, if the tip is nearby the adatom. Within the nonequilibrium Keldysh technique we analyze the interplay between the lateral displacement of the tip and the intra adatom Coulomb interaction on the spin-diode effect. As the tip moves away from the adatom the spin-diode effect vanishes and the currents become polarized for both V > 0 and V < 0. We also find an imbalance between the up and down spin populations in the adatom, which can be tuned by the tip position and the bias. Finally, due to the presence of the adsorbate on the surface, we observe spin-resolved Friedel oscillations in the current, which reflects the oscillations in the calculated local density of states (LDOS) of the subsystem surface + adatom.
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.
Resumo:
A combined analytical and numerical study is performed of the mapping between strongly interacting fermions and weakly interacting spins, in the framework of the Hubbard, t-J, and Heisenberg models. While for spatially homogeneous models in the thermodynamic limit the mapping is thoroughly understood, we here focus on aspects that become relevant in spatially inhomogeneous situations, such as the effect of boundaries, impurities, superlattices, and interfaces. We consider parameter regimes that are relevant for traditional applications of these models, such as electrons in cuprates and manganites, and for more recent applications to atoms in optical lattices. The rate of the mapping as a function of the interaction strength is determined from the Bethe-Ansatz for infinite systems and from numerical diagonalization for finite systems. We show analytically that if translational symmetry is broken through the presence of impurities, the mapping persists and is, in a certain sense, as local as possible, provided the spin-spin interaction between two sites of the Heisenberg model is calculated from the harmonic mean of the onsite Coulomb interaction on adjacent sites of the Hubbard model. Numerical calculations corroborate these findings also in interfaces and superlattices, where analytical calculations are more complicated.