210 resultados para CHIRAL STATIONARY PHASE
Resumo:
The fluid flow over bodies with complex geometry has been the subject of research of many scientists and widely explored experimentally and numerically. The present study proposes an Eulerian Immersed Boundary Method for flows simulations over stationary or moving rigid bodies. The proposed method allows the use of Cartesians Meshes. Here, two-dimensional simulations of fluid flow over stationary and oscillating circular cylinders were used for verification and validation. Four different cases were explored: the flow over a stationary cylinder, the flow over a cylinder oscillating in the flow direction, the flow over a cylinder oscillating in the normal flow direction, and a cylinder with angular oscillation. The time integration was carried out by a classical 4th order Runge-Kutta scheme, with a time step of the same order of distance between two consecutive points in x direction. High-order compact finite difference schemes were used to calculate spatial derivatives. The drag and lift coefficients, the lock-in phenomenon and vorticity contour plots were used for the verification and validation of the proposed method. The extension of the current method allowing the study of a body with different geometry and three-dimensional simulations is straightforward. The results obtained show a good agreement with both numerical and experimental results, encouraging the use of the proposed method.
Resumo:
Development of the positive temperature coefficient of resistivity (PTCR) in Er3+ and Ca2+ co-doped ferroelectric BaTiO3 was studied in this work, with Er3+ being used to act as a donor doping. Irrespective of all the materials showing high densities after sintering at 1200 to 1300 ºC, these revealed insulator at the lowest sintering temperature, changing to semiconducting and PTCR-type materials only when the sintering temperature was further increased. Observations from X-ray diffraction help correlating this effect with phase development in this formulated (Ba,Ca,Er)TiO3 system, considering the formation of initially two separated major (Ba,Ca)TiO3- and minor (Ca,Er)TiO3-based compounds, as a consequence of cation size-induced stress energy effects. Thus, appearance and enhancement here of the semiconducting and PTCR responses towards higher sintering temperatures particularly involve the incorporation of Er3+ into the major phase, rendering finally possible the generation and "percolative-like" migration of electrons throughout the whole material.
Resumo:
It is proven that the field equations of a previously studied metric nonsymmetric theory of gravitation do not admit any non-singular stationary solution which represents a field of non-vanishing total mass and non-vanishing total fermionic charge.
Resumo:
In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.
Resumo:
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.
Resumo:
The present work has aimed to determine the 16 US EPA priority PAH atmospheric particulate matter levels present in three sites around Salvador, Bahia: (i) Lapa bus station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, and (iii) Bananeira village on Maré Island, a non vehicle-influenced site with activities such as handcraft work and fisheries. Results indicated that BbF (0.130-6.85 ng m-3) is the PAH with highest concentration in samples from Aratu harbor and Bananeira and CRY (0.075-6.85 ng m-3) presented higher concentrations at Lapa station. PAH sources from studied sites were mainly of anthropogenic origin such as gasoline-fueled light-duty vehicles and diesel-fueled heavy-duty vehicles, discharges in the port, diesel burning from ships, dust ressuspension, indoor soot from cooking, and coal and wood combustion for energy production.
Resumo:
Solid-phase microextraction, using on-line bis(trimethylsilyl)trifluoroacetamide derivatisation, gas chromatography, and mass spectrometry, was evaluated in the quantification of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in water samples. Fibres encompassing a wide range of polarities were used with headspace and direct immersion sampling. For the immersion procedure, various parameters affecting MX extraction, including pH, salinity, temperature, and extraction time were evaluated. The optimised method (polyacrylate fibre; 20% Na2SO4; pH 2.0; 60 min; 20 °C) was applied for reservoir chlorinated water samples-either natural or spiked with MX (50 ng L-1 and 100 ng L-1). The recovery of MX ranged from 44 to 72%. Quantification of MX in water samples was done using external standard and the selected ion monitoring mode. Correlation coefficient (0.98%), relative standard deviation (5%), limit of detection (30 ng L-1) and limit of quantification (50 ng L-1) were obtained from calibration curve.
Resumo:
It was evaluated the effects of metabolizable energy (ME) and digestible lysine (dLYS) densities on performance and body composition of weaned piglets. The study used 114 piglets weaned at 7.4 ± 0.80 kg, out of which 108 were allotted in the nursery and 6 were slaughtered on the weaning day to determine comparative data of body chemical composition. Six nutrients densities were stipulated from a previous study based on the highest nitrogen retention, maintaining the following ME:LYS relationship in the experimental diets: 3,390:1.291; 3,450:1.409; 3,650:1.411; 3,780:1.461; 3,940:1.507; and 4,109 kcal/kg ME:1.564% dLYS. The experimental diets were offered for 13 days when the piglets reached 12.986 ± 1.449 kg of body weight. The probable residual effects of nutritional density on the subsequent performance of the piglets were evaluated. At the end of initial phase 1, six piglets from each density were slaughtered to determine their chemical composition in body fractions and empty body. There was no significant influence of nutritional levels on the performance of the piglets at the end of the evaluation. The results of food conversion and body composition confirm the level indicated in the previous study, 4 g dLYS/Mcal of ME. The increase of energy and lysine densities confirms the need for a correct relationship among both of them to assure better performance of the piglets at the beginning of the growing phase.
Resumo:
We investigate synchronization in a Kuramoto-like model with nearest neighbor coupling. Upon analyzing the behavior of individual oscillators at the onset of complete synchronization, we show that the time interval between bursts in the time dependence of the frequencies of the oscillators exhibits universal scaling and blows up at the critical coupling strength. We also bring out a key mechanism that leads to phase locking. Finally, we deduce forms for the phases and frequencies at the onset of complete synchronization.
Resumo:
Ti-base alloys containing significant amounts of silicon have been considered for high temperature structural applications. Thus, information concerning phase stability on the Ti-Si system is fundamental and there are not many investigations covering the phase stability of the Ti(3)Si phase, specially its dependence on oxygen/nitrogen contamination. In this work the stability of this phase has been evaluated through heat-treatment of rapidly solidified Ti-rich Ti-Si alloys at 700 A degrees C and 1000 A degrees C. The rapidly solidified splats presented nanometric scale microstructures which facilitated the attainment of equilibrium conditions. The destabilization of Ti(3)Si due to oxygen/nitrogen contamination has been noted.
Resumo:
The aim of this work was to verify the stability of the beta Co(2)Si phase in the Co-Si system. The samples were produced via arc-melting and characterized through Scanning Electron Microscopy (SEM) and Differential Thermal Analysis (DTA). The results have confirmed the stability of the beta Co(2)Si phase, however, a modification of the shape of beta CoSi phase field is proposed in order to fully explain the results.
Resumo:
Single-point diamond turning of monocrystalline semiconductors is an important field of research within brittle materials machining. Monocrystalline silicon samples with a (100) orientation have been diamond turned under different cutting conditions (feed rate and depth of cut). Micro-Raman spectroscopy and atomic force microscopy have been used to assess structural alterations and surface finish of the samples diamond turned under ductile and brittle modes. It was found that silicon undergoes a phase transformation when machined in the ductile mode. This phase transformation is evidenced by the creation of an amorphous surface layer after machining which has been probed by Raman scattering. Compressive residual stresses are estimated for the machined surface and it is observed that they decrease with an increase in the feed rate and depth of cut. This behaviour has been attributed to the formation of subsurface cracks when the feed rate is higher than or equal to 2.5 mu m/rev. The surface roughness was observed to vary with the feed rate and the depth of cut. An increase in the surface roughness was influenced by microcrack formation when the feed rate reached 5.0 mu m/rev. Furthermore, a high-pressure phase transformation induced by the tool/material interaction and responsible for the ductile response of this typical brittle material is discussed based upon the presented Raman spectra. The application of this machining technology finds use for a wide range of high quality components, for example the creation of a micrometre-range channel for microfluidic devices as well as microlenses used in the infrared spectrum range.
Resumo:
A phase shift proximity printing lithographic mask is designed, manufactured and tested. Its design is based on a Fresnel computer-generated hologram, employing the scalar diffraction theory. The obtained amplitude and phase distributions were mapped into discrete levels. In addition, a coding scheme using sub-cells structure was employed in order to increase the number of discrete levels, thus increasing the degree of freedom in the resulting mask. The mask is fabricated on a fused silica substrate and an amorphous hydrogenated carbon (a:C-H) thin film which act as amplitude modulation agent. The lithographic image is projected onto a resist coated silicon wafer, placed at a distance of 50 mu m behind the mask. The results show a improvement of the achieved resolution - linewidth as good as 1.5 mu m - what is impossible to obtain with traditional binary masks in proximity printing mode. Such achieved dimensions can be used in the fabrication of MEMS and MOEMS devices. These results are obtained with a UV laser but also with a small arc lamp light source exploring the partial coherence of this source. (C) 2010 Optical Society of America
Resumo:
Oscillator networks have been developed in order to perform specific tasks related to image processing. Here we analytically investigate the existence of synchronism in a pair of phase oscillators that are short-range dynamically coupled. Then, we use these analytical results to design a network able of detecting border of black-and-white figures. Each unit composing this network is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the units forming the network are also dynamical. Border detection emerges from the network activity.
Resumo:
This work is part of a research under construction since 2000, in which the main objective is to measure small dynamic displacements by using L1 GPS receivers. A very sensible way to detect millimetric periodic displacements is based on the Phase Residual Method (PRM). This method is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this article, it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs which not always allow the choice of the aimed satellites. In order to improve the ability to detect millimetric oscillations, two filtering techniques are introduced. One is auto-correlation which reduces the phase noise with random time behavior. The other is the running mean to separate low frequency from the high frequency phase sources. Two trials have been carried out to verify the proposed method and filtering techniques. One simulates a 2.5 millimeter vertical antenna displacement and the second uses the GPS data collected during a bridge load test. The results have shown a good consistency to detect millimetric oscillations.