67 resultados para whole rice meal
Resumo:
Despite its importance to agriculture, the genetic basis of heterosis is still not well understood. The main competing hypotheses include dominance, overdominance, and epistasis. NC design III is an experimental design that. has been used for estimating the average degree of dominance of quantitative trait 106 (QTL) and also for studying heterosis. In this study, we first develop a multiple-interval mapping (MIM) model for design III that provides a platform to estimate the number, genomic positions, augmented additive and dominance effects, and epistatic interactions of QTL. The model can be used for parents with any generation of selling. We apply the method to two data sets, one for maize and one for rice. Our results show that heterosis in maize is mainly due to dominant gene action, although overdominance of individual QTL could not completely be ruled out due to the mapping resolution and limitations of NC design III. For rice, the estimated QTL dominant effects could not explain the observed heterosis. There is evidence that additive X additive epistatic effects of QTL could be the main cause for the heterosis in rice. The difference in the genetic basis of heterosis seems to be related to open or self pollination of the two species. The MIM model for NC design III is implemented in Windows QTL Cartographer, a freely distributed software.
Resumo:
This study aimed to establish the optimum level of palm kernel meal in the diet of Santa Ines lambs based on the sensorial characteristics and fatty acid profile of the meat. We used 32 lambs with a starting age of 4 to 6 months and mean weight of 22 2.75 kg, kept in individual stalls. The animals were fed with Tifton-85 hay and a concentrate mixed with 0.0, 6.5, 13.0 or 19.5% of palm kernel meal based on the dry mass of the complete diet. These levels formed the treatments. Confinement lasted 80 days and on the last day the animals were fasted and slaughtered. After slaughter, carcasses were weighed and sectioned longitudinally, along the median line, into two antimeres. Half-carcasses were then sliced between the 12th and 13th ribs to collect the loin (longissimus dorsi), which was used to determine the sensorial characteristics and fatty acid profile of the meat. For sensorial evaluation, samples of meat were given to 54 judges who evaluated the tenderness, juiciness, appearance, aroma and flavor of the meat using a hedonic scale. Fatty acids were determined by gas chromatography. The addition of palm kernel meal to the diet had no effect on the sensorial characteristics of meat juiciness, appearance, aroma or flavor. However, tenderness showed a quadratic relationship with the addition of the meal to the diet. The concentration of fatty acids C12:0, C14:0 and C16:0 increased with the addition of palm kernel meal, as did the sum of medium-chain fatty acids and the atherogenicity index. Up to of 19.5% of the diet of Santa Ines lambs can be made up of palm kernel meal without causing significant changes in sensorial characteristics. However, the fatty acid profile of the meat was altered.
Resumo:
Relationships between the chemical composition of the 9th- to 11th-rib section and the chemical composition of the carcass and empty body were evaluated for Bos indicus (108 Nellore and 36 Guzerah; GuS) and tropically adapted Bos taurus (56 Caracu; CaS) bulls, averaging 20 to 24 mo of age at slaughter. Nellore cattle were represented by 56 animals from the selected herd (NeS) and 52 animals from the control herd (NeC). The CaS and GuS bulls were from selected herds. Selected herds were based on 20 yr of selection for postweaning BW. Carcass composition was obtained after grinding, homogenizing, sampling, and analyzing soft tissue and bones. Similarly, empty body composition was obtained after grinding, homogenizing, sampling, analyzing, and combining blood, hide, head + feet, viscera, and carcass. Bulls were separated into 2 groups. Group 1 was composed of 36 NeS, 36 NeC, 36 CaS, and 36 GuS bulls and had water, ether extract (EE), protein, and ash chemically determined in the 9th- to 11th-rib section and in the carcass. Group 2 was composed of 20 NeS, 16 NeC, and 20 CaS bulls and water, EE, protein, and ash were determined in the 9th-to 11th-rib section, carcass, and empty body. Linear regressions were developed between the carcass and the 9th-to 11th-rib section compositions for group 1 and between carcass and empty body compositions for group 2. The 9th-to 11th-rib section percentages of water (RWt) and EE (RF) predicted the percentages of carcass water (CWt) and carcass fat (CF) with high precision: CWt, % = 29.0806 + 0.4873 x RWt, % (r(2) = 0.813, SE = 1.06) and CF, % = 10.4037 + 0.5179 x RF, % (r(2) = 0.863, SE = 1.26), respectively. Linear regressions between percentage of CWt and CF and empty body water (EBWt) and empty body fat (EBF) were also predicted with high precision: EBWt, % = -9.6821 + 1.1626 x CWt, % (r(2) = 0.878, SE = 1.43) and EBF, % = 0.3739 + 1.0386 x CF, % (r(2) = 0.982, SE = 0.65), respectively. Chemical composition of the 9th-to 11th-rib section precisely estimated carcass percentages of water and EE. These regressions can accurately predict carcass and empty body compositions for Nellore, Guzerah, and Caracu breeds.
Resumo:
Urea and ammonium sulfate are principal nitrogen (N) sources for crop production. Two field experiments were conducted during three consecutive years to evaluate influence of urea and ammonium sulfate application on grain yield, soil pH, calcium (Ca) saturation, magnesium (Mg) saturation, base saturation, aluminum (Al) saturation, and acidity (H + Al) saturation in lowland rice production. Grain yield was significantly influenced by urea as well as ammonium sulfate fertilization. Soil pH linearly decreased with the application of N by ammonium sulfate and urea fertilizers. However, the magnitude of the pH decrease was greater by ammonium sulfate than by urea. The Ca and Mg saturations were decreased at the greater N rates compared to low rates of N by both the fertilizer sources. The Al and acidity saturation increased with increasing N rates by both the fertilizer sources. However, these acidity indices were increased more with the application of ammonium sulfate compared with urea. Rice grain yield had negative associations with pH, Ca saturation, Mg saturation, and base saturation and positive associations with Al and acidity saturation. This indicates that rice plant is tolerant to soil acidity.
Resumo:
Potassium (K) plays an important role in many physiological and biochemical processes in plants and its adequate use is an important issue for sustainable economic crop production. Soil test-based K fertilizer recommendations are very limited for lowland rice (Oryza sativa L.) grown on Inceptisols. The objective of this study was to calibrate K soil testing for the response of lowland rice (cv. Ipagri 109) to added K. A field experiment was conducted in the farmers` field in the municipality of Lagoa da Confusao, State of Tocantins, central Brazil. The K rates used were 0, 125, 250, 375, 500, and 625 kg K ha-1 applied as broadcast and incorporated during sowing of the first rice crop. Rice responded significantly to K fertilization during 2 years of experimentation. Maximum grain yield of about 6,000 kg ha-1 was obtained with 57 mg K kg-1 soil in the first year and with 30 mg K kg-1 in the second year. This indicated that at low levels of K in the soil, nonexchangeable K was available for plant growth. Potassium use efficiency designated as agronomic efficiency (kg grain produced/kg K applied) decreased significantly in a quadratic fashion with increasing K level in the soil. Agronomic efficiency had a significantly linear association with grain yield. Hence, improving agronomic efficiency with management practices can improve rice yield.
Resumo:
Potassium (K) is an essential nutrient for higher plants. Information on K uptake and use efficiency of upland rice under Brazilian conditions is limited. A greenhouse experiment was conducted with the objective to evaluate influence of K on yield, K uptake, and use efficiency of six upland rice genotypes grown on Brazilian Oxisol. The K rate used was zero (natural soil level) and 200 mg K kg-1 of soil. Shoot dry weight and grain yield were significantly influenced by K level and genotype treatments. However, K x genotype interactions were not significant, indicating similar responses of genotypes at two K levels for shoot dry weight and grain yield. Genotypes produced grain yield in the order of BRS Primavera BRA 01596 BRSMG Curinga BRS 032033 BRS Bonanca BRA 02582. Potassium concentration in shoot was about sixfold greater compared to grain, across two K levels and six genotypes. However, K utilization efficiency ratio (KUER) (mg shoot or grain yield / mg K uptake in shoot or root) was about 6.5 times greater in grain compared to shoot, across two K level and six genotypes. Potassium uptake in shoot and grain and KUER were significantly and positively associated with grain yield. Soil calcium (Ca), K, base saturation, acidity saturation, Ca saturation, K saturation, Ca/K ratio, and magnesium (Mg)/K ratio were significantly influenced by K application rate.
Resumo:
Pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite produced by a narrow range of Gram-negative bacteria. The PRN biosynthesis by rhizobacteria presumably has a key role in their life strategies and in the biocontrol of plant diseases. The biosynthetic operon that encodes the pathway that converts tryptophan to PRN is composed of four genes, prnA through D, whose diversity, genomic context and spread over bacterial genomes are poorly understood. Therefore, we launched an endeavour aimed at retrieving, by in vitro and in silico means, diverse bacteria carrying the prnABCD biosynthetic loci in their genomes. Analysis of polymorphisms of the prnD gene sequences revealed a high level of conservation between Burkholderia, Pseudomonas and Serratia spp. derived sequences. Whole-operon- and prnD-based phylogeny resulted in tree topologies that are incongruent with the taxonomic status of the evaluated strains as predicted by 16S rRNA gene phylogeny. The genomic composition of c. 20 kb DNA fragments containg the PRN operon varied in different strains. Highly conserved and distinct transposase-encoding genes surrounding the PRN biosynthetic operons of Burkholderia pseudomallei strains were found. A prnABCD-deprived genomic region in B. pseudomallei strain K96243 contained the same gene composition as, and shared high homology with, the flanking regions of the PRN operon in B. pseudomallei strains 668, 1106a and 1710b. Our results strongly suggest that the PRN biosynthetic operon is mobile. The extent, frequency and promiscuity of this mobility remain to be understood.
Resumo:
This study was conducted to evaluate the natural variability of total, extractable and non-extractable phenolics in pigmented and non-pigmented rice genotypes (Oryza sativa L.) and to estimate whether the contents and distribution of these compounds are typical for genotypes from indica and japonica subspecies. Twenty-one samples of commercial as well as new genotypes of brown rice, including seven pigmented genotypes were obtained from two Agronomic Institutes in South Brazil. Free and conjugated phenolics were extracted with ethanol, while bound phenolics were released by alkaline hydrolysis. Total phenolics were estimated in both fractions by the Folin-Ciocalteau method. Genotypes from Japonica and indica non-pigmented subspecies were not statistically distinguishable from each other, but differences in phenolic contents were associated with pericarp color. Despite individual differences, total phenolics were four times higher in pigmented than in non-pigmented genotypes (4246 and 1073 mg ferulic acid equiv. kg(-1), respectively). These high amounts were mostly due to the presence of extractable (free and conjugated) phenolics, which comprised up to 81% of total phenolics for pigmented genotypes. Non-extractable (bound) phenolics comprised 40% of total phenolics of non-pigmented rice genotypes while pigmented genotypes presented greater absolute amounts, but their contribution on total phenolics was small. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The lack of a clear correlation between the levels of antibody to pertussis antigens and protection against disease lends credence to the possibility that cell-mediated immunity provides primary protection against disease. This phase I comparative trial had the aim of comparing the in vitro cellular immune response and anti-pertussis toxin (anti-PT) immunoglobulin G (IgG) titers induced by a cellular pertussis vaccine with low lipopolysaccharide (LPS) content (wP(low) vaccine) with those induced by the conventional whole-cell pertussis (wP) vaccine. A total of 234 infants were vaccinated at 2, 4, and 6 months with the conventional wP vaccine or the wP(low) vaccine. Proliferation of CD3(+) T cells was evaluated by flow cytometry after 6 days of peripheral blood mononuclear cell culture with stimulation with heat-killed Bordetella pertussis or phytohemagglutinin (PHA). CD3(+), CD4(+), CD8(+), and T-cell receptor gamma delta-positive (gamma delta(+)) cells were identified in the gate of blast lymphocytes. Gamma interferon, tumor necrosis factor alpha, interleukin-4 (IL-4), and IL-10 levels in super-natants and serum anti-PT IgG levels were determined using enzyme-linked immunosorbent assay (ELISA). The net percentage of CD3(+) blasts in cultures with B. pertussis in the group vaccinated with wP was higher than that in the group vaccinated with the wP(low) vaccine (medians of 6.2% for the wP vaccine and 3.9% for the wP(low) vaccine; P = 0.029). The frequencies of proliferating CD4(+), CD8(+), and gamma delta(+) cells, cytokine concentrations in supernatants, and the geometric mean titers of anti-PT IgG were similar for the two vaccination groups. There was a significant difference between the T-cell subpopulations for B. pertussis and PHA cultures, with a higher percentage of gamma delta(+) cells in the B. pertussis cultures (P < 0.001). The overall data did suggest that wP vaccination resulted in modestly better specific CD3(+) cell proliferation, and gamma delta(+) cell expansions were similar with the two vaccines.
Resumo:
The aim of this work is to propose a biomonitoring method for the simultaneous determination of Cd and Pb in whole blood by simultaneous electrothermal atomic absorption spectrometry for assessment of environmental levels. A volume of 200 mu L of whole blood was diluted in 500 mu L of 0.2% (w v(-1)) Triton(R) X-100 + 2.0% (v v(-1)) HNO3. Trichloroacetic acid was added for protein precipitation and the supernatant analyzed. A mixture of 250 mu g W + 200 mu g Rh as permanent and 2.0% (w v(-1)) NH4H2PO4 as co-injected modifiers were used. Characteristic masses and limits of detections (n = 20, 3s) for Cd and Pb were 1.26 and 33 pg and 0.026 mu g L-1 and 0.65 mu g L-1, respectively. Repeatability ranged from 1.8 to 6.8% for Cd and 1.2 to 1.7% for Pb. The trueness of method was checked by the analysis of three Reference Materials: Lyphocheck(R) Whole Blood Metals Control level 1 and Seronorm(TM) Trace Elements in Whole Blood levels 1 and 2. The found concentrations presented no statistical differences at the 95% confidence level. Blood samples from 40 volunteers without occupational exposure were analyzed and the concentrations ranged from 0.13 to 0.71 mu g L-1 (0.32 +/- 0.19 mu g L-1) for Cd and 9.3 to 56.7 mu g L-1 (25.1 +/- 10.8 mu g L-1) for Pb. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Higher blood lead (BPb) levels have been reported in children living in communities that receive fluoride-treated water. Here, we examined whether fluoride co-administered with lead increases BPb and lead concentrations in calcified tissues in Wistar rats exposed to this metal from the beginning of gestation. We exposed female rats and their offspring to control water (Control Group), 100 mg/L of fluoride (F Group), 30 mg/L of lead (Pb Group), or 100 mg/L of fluoride and 30 mg/L of lead (F+ Pb Group) from 1 week prior to mating until offspring was 81 days old. Blood and calcified tissues (enamel, dentine, and bone) were harvested at day 81 for lead and fluoride analyses. Higher BPb concentrations were found in the F+ Pb Group compared with the Pb Group (76.7 +/- 11.0 mu g/dL vs. 22.6 +/- 8.5 mu g/dL, respectively: p <0.001). Two-to threefold higher lead concentrations were found in the calcified tissues in the F+ Pb Group compared with the Pb Group (all p <0.001). Fluoride concentrations were similar in the F and in the F+ Pb Groups. These findings show that fluoride consistently increases BPb and calcified tissues Pb concentrations in animals exposed to low levels of lead and suggest that a biological effect not yet recognized may underlie the epidemiological association between increased BPb lead levels in children living in water-fluoridated communities. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A simple method with a fast sample preparation procedure for total and inorganic mercury determinations in blood samples is proposed based on flow injection cold vapor inductively coupled plasma mass spectrometry (FI-CVICP-MS). Aliquots of whole blood (500 mL) are diluted 1 + 1 v/v with 10.0% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 3 h at room temperature and then further diluted 1 + 4 v/v with 2.0% v/v HCl. The inorganic Hg was released by online addition of L-cysteine and then reduced to elemental Hg by SnCl(2). On the other hand, total mercury was determined by on-line addition of KMnO(4) and then reduced to elemental Hg by NaBH(4). Samples were calibrated against matrix-matching. The method detection limit was found to be 0.80 mu g L(-1) and 0.08 mu g L(-1) for inorganic and total mercury, respectively. Sample throughput is 20 samples h(-1). The method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). For additional validation purposes, human whole blood samples were analyzed by the proposed method and by an established CV AAS method, with no statistical difference between the two techniques at 95% confidence level on applying the t-test.
Resumo:
Pregnant women are one of the most sensitive populations to the toxic effects associated with lead (Pb) exposure. These effects are primarily associated with plasma Pb (Pb-P), which reflects the most rapidly exchangeable fraction of Pb in the bloodstream, and elevated maternal Pb-P may be more relevant to foetal Pb exposure than whole blood Pb (Pb-B). We investigated how pregnancy affects Pb-B, Pb-P and %Pb-P/Pb-B ratios without the influence of the 6-aminolevulinic acid dehydratase (ALAD) G177C polymorphism, which is a major genetic factor influencing Pb-B, Pb-P and %Pb-P/Pb-B ratios. Genotypes for the ALAD G177C polymorphism were determined by PCR and restriction fragment length digestion in nine pregnant and 20 non-pregnant women, aged 18-33, environmentally exposed to Pb. Here, we included only women with ALAD 1-1 genotype. Pb-P and Pb-B were determined by inductively coupled plasma mass spectrometry and by graphite furnace atomic absorption spectrometry, respectively. We found no differences in Pb-B (P > 0.05). However, pregnant women had a 2-fold increase in Pb-P and a 3-fold increase in %Pb-P/Pb-B (both P < 0.01) compared to nonpregnant women. These alterations in Pb concentrations associated with pregnancy are similar to those associated with different ALAD gene variants. We can now better appreciate how pregnancy affects foetal exposure to Pb without the influence of this important genetic factor.
Resumo:
A simple and fast method is described for simultaneous determination of methylmercury (MeHg), ethylmercury (Et-Hg) and inorganic mercury (Ino-Hg) in blood samples by using capillary gas chromatography-inductively coupled plasma mass spectrometry (GC-ICP-MS) after derivatization and alkaline digestion. Closed-vessel microwave assisted digestion conditions with tetramethylammonium hydroxide (TMAH) have been optimized. Derivatization by using ethylation and propylation procedures have also been evaluated and compared. The absolute detection limits (using a 1 mu L injection) obtained by GC-ICP-MS with ethylation were 40 fg for MeHg and Ino-Hg, respectively, and with propylation were 50, 20 and 50 fg for MeHg, Et-Hg and Ino-Hg, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). Additional validation is provided based on the comparison of results obtained for mercury speciation in blood samples with the proposed procedure and with a previously reported LC-ICP-MS method. With the new proposed procedure no tedious clean-up steps are required and a considerable improvement of the time of analysis was achieved compared to other methods using GC separation.
Resumo:
Gut hormones Ighrelin, peptide YY (PYY) and ghrcagon-like peptide-1 (GLP-1)] are an important group of hormones that target appetite control. They are released from endocrine L cells of the small bowel in proportion to the volume, components and calories in a meal. In the current study, 20 g of gelatin (flavored and sweetened) were given to obese patients (n=12) and lean subjects (n=10). Subsequently, plasma samples were collected at-30-minute intervals rip to 180 minutes and glucose, insulin, PYY, GLP-1 and ghrelin were assayed using specific and sensitive immunofluorometric and radioimmunoassays. As expected, obese patients had normal serum glucose levels, higher serum insulin, and lower plasma concentration of ghrelin at all times compared to lean subjects. GLP-1 plasma levels were significantly elevated at 60 minutes, peaking at 120 minutes in obese patients and lean subjects. As a consequence, there was a significant rise in serum insulin levels with a significantly higher peak level at 60 min (obese) and 30 min (lean). There were no significant changes in PYY plasma concentrations and no correlation was found between body mass index and concentrations of ghrelin, PYY and GLP-1 in the group of obese patients. In conclusion, a single gelatin meal induces a rise in plasma GLP-1 followed by an increase in serum levels of insulin. These findings may be applied to maximize satiety in obese patients as a means of improving adherence to calorie-controlled diets as well as provide better control of diabetic patients.