55 resultados para fish handling
Resumo:
This paper describes an easy, cheap, and safe method of capturing and handling the medically important spider Phoneutria for venom extraction. The method does not injure or kill the spider and allows the extraction of pure venom.
Resumo:
In ostariophysan fish, the detection of alarm substance released from the skin of a conspecific or a sympatric heterospecific may elicit alarm reactions or antipredator behavioral responses. In this study, experiments were performed to characterize and quantify the behavioral response threshold of Leporinus piau, both individually and in schools, to growing dilutions of conspecific (CAS) and heterospecific skin extract (HAS). The predominant behavioral response to CAS stock stimulation was biphasic for fish held individually, with a brief initial period of rapid swimming followed by a longer period of immobility or reduced swimming activity. As the dilution of skin extract was increased, the occurrence and magnitude of the biphasic alarm response tended to decrease, replaced by a slowing of locomotion. Slowing was the most common antipredator behavior, observed in 62.5% of animals submitted to HAS stimulation. School cohesion, measured as proximity of fish to the center of the school, and swimming activity near the water surface significantly increased after exposure to CAS when compared with the control group exposed to distilled water. Histological analysis of the epidermis revealed the presence of Ostariophysi-like club cells. The presence of these cells and the behavioral responses to conspecific and heterospecific skin extract stimulation suggest the existence of a pheromone alarm system in L. piau similar to that in Ostariophysi, lending further support for the neural processing of chemosensory information in tropical freshwater fish.
Resumo:
The present study provides a detailed description of morphological and hodological aspects of the glomerular nucleus in the weakly electric fish Gymnotus sp., and explores the evolutionary and functional implications flowing from this analysis. The glomerular nucleus of Gymnotus shows numerous morphological similarities with the glomerular nucleus of percomorph fish, although cytoarchitectonically simpler. In addition, congruence of the histochemical acetylcholinesterase (AChE) distribution with cytoarchitectonic data suggests that the glomerular nucleus, together with the ventromedial cell group of the medial subdivision of the preglomerular complex (PGm-vmc) rostrally, and the subglomerular nucleus (as identified by Maler et al. [1991] J Chem Neuroanat 4:1-38) caudally, may form a distinct longitudinally organized glomerular complex. Our results show that an important source of sensory afferents to the glomerular nucleus originates in the pretectal and electrosensorius nuclei. The glomerular nucleus in turn projects to the hypothalamus (inferior lobe and anterior hypothalamus), to the anterior tuberal nucleus, and to the medial region of the preglomerular nucleus (PGm). These data suggest that visual and electrosensory information reach the glomerular nucleus and are relayed to the hypothalamus and, via PGm, to the pallium. Such connections are similar to those of the glomerular nucleus in percomorphs and the posterior pretectal nucleus in osteoglossomorph, esocids, and salmonids, where they comprise one component of a visual processing pathway. In Gymnotiform fish, however, the pretectal region that projects to the glomerular nucleus is dominated by electrosensory input (visual input is minor), which is consistent with the dominant role of electroreception in these fish. J. Comp. Neurol. 519:1658-1676, 2011. (c) 2011 Wiley-Liss, Inc.
Resumo:
Background/Aims: To evaluate the effects of neonatal handling on hydroelectrolytic balance in adult rats. Methods: The litters were divided into two groups: nonhandled and handled. The procedure consisted of handling the pups for 1 min/day in the first 10 days postnatally. When adults, animals had their body weight verified and were housed in individual metabolic cages. After a 24-hour period, urine samples were collected and the urinary and water intake volumes measured. Blood samples to determine osmolality, aldosterone, corticosterone, angiotensin II, creatinine, urea, sodium and potassium levels were collected. The kidneys were removed for histological assessment. Urinary osmolality, sodium, urea and creatinine were also measured and the creatinine clearance (CC) calculated. Results: No difference between groups was found in the body weight. Handled animals showed a reduction in the total kidney wet weight, water intake, urinary volume, CC, plasma angiotensin II, corticosterone and aldosterone when compared to the nonhandled and an increase in the urinary osmolality and sodium excretion fraction. No differences in serum potassium and no evidence of structural changes were demonstrated by histological analysis. Conclusion: Neonatal handling induced long-lasting effects decreasing renal function without evidence of kidney structural changes. Copyright (c) 2009 S. Karger AG, Basel
Resumo:
The aim of this study was to determine if Toxoplasma gondii are present in oysters (Crassostrea rhizophorae) and mussels (Mytella guyanensis) under natural conditions using a bioassay in mice and molecular detection methods. We first compared two standard protocols for DNA extraction, phenol-chloroform (PC) and guanidine-thiocyanate (GT), for both molluscs. A total of 300 oysters and 300 mussels were then acquired from the fish market in Santos city, Sao Paulo state, Brazil, between March and August of 2008 and divided into 60 groups of 5 oysters and 20 groups of 15 mussels. To isolate the parasite, five mice were orally inoculated with sieved tissue homogenates from each group of oysters or mussels. For molecular detection of T. gondii, DNA from mussels was extracted using the PC method and DNA from oysters was extracted using the GT method. A nested-PCR (Polymerase Chain Reaction) based on the amplification of a 155 bp fragment from the B1 gene of T. gondii was then performed. Eleven PCR-RFLP (Restriction Fragment Length Polymorphism) markers, SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, CS3 and Apico, were used to genotype positive samples. There was no isolation of the parasite by bioassay in mice. T. gondii was not detected in any of the groups of mussels by nested-PCR. DNA of T. gondii was apparently detected by nested-PCR in 2 groups of oysters (3.3%). Genotyping of these two positive samples was not successful. The results suggest that oysters of the species C. rhizophorae, the most common species from the coast of Sao Paulo, can filter and retain T. gondii oocysts from the marine environment. Ingestion of raw oysters as a potential transmission source of T. gondii to humans and marine mammals should be further investigated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Early-life environmental events that disrupt the mother-pup relationship may induce profound long-lasting changes on several behavioral and neuroendocrine systems. The neonatal handling procedure, which involves repeated brief maternal separations followed by experimental manipulations, reduces sexual behavior and induces anovulatory estrous cycles in female rats. On the afternoon of proestrus, neonatally handled females show a reduced surge of luteinizing hormone (LH) and an increased content of gonadotropin-releasing hormone in the medial preoptic area (MPOA). In order to detect the possible causes for the reduced ovulation and sexual behavior, the present study aimed to analyze the effects of neonatal handling on noradrenaline (NA) and nitric oxide (NO) levels in the MPOA on the afternoon of proestrus. Neonatal handling reduced MHPG (NA metabolite) levels and MHPG/NA ratio in the MPOA, indicating decreased NAergic activity. Additionally, neonatal handling decreased NO levels, as measured by the metabolites (NO x), nitrite and nitrate in the same period. We may conclude that the neonatal handling procedure decreased activity of the NAergic and NOergic systems in the MPOA during proestrus, which is involved in the control of LH and FSH secretion, and this may possibly explain the anovulatory estrous cycles and reduced sexual behavior of the neonatally handled female rats. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
Early-life events may induce alterations in neuronal function in adulthood. A crucial aspect in studying long-lasting effects induced by environmental interventions imposed to the animal several weeks before is finding a stable change that could be causally related to the phenotype observed in adulthood. In order to explain an adult trait, it seems necessary to look back to early life and establish a temporal line between events. The neonatal handling procedure is an experimental tool to analyze the long-lasting impact of early-life events. Aside from the neuroendocrine response to stress, neonatal handling also alters the functionality of the hypothalamus-pituitary-gonad (HPG) axis. Reductions in ovulation and surge of the luteinizing hormone (LH) on the proestrous day were shown in female rats. Considering the importance of the medial preoptic area (MPA) for the control of ovulation, the present study aimed to verify the effects of neonatal handling on the numerical density and cell size in the MPA in 11-day-old and 90-day-old female rats. Cellular proliferation was also assessed using BrdU (5-bromo-2`-deoxyuridine) in 11-day-old pups. Results showed that neonatal handling induces a stable reduction in the number of cells and in the size of the cell soma, which were lower in handled females than in nonhandled ones at both ages. Cellular proliferation in the MPA was also reduced 24 h after the last manipulation. The repeated mother-infant disruption imposed by the handling procedure ""lesioned"" the MPA. The dysfunction in the ovulation mechanisms induced by the handling procedure could be related to that neuronal loss. The study also illustrates the impact of an environmental intervention on the development of the brain. (C) 2008 Elsevier B.V. All rights reserved
Resumo:
Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the presence of potentially human pathogenic strains of Vibrio spp., Aeromonas spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus in fish commercialized in street markets of Sao Paulo city, Brazil. Twenty fish of different species were analyzed for foodborne pathogens using conventional methods. High levels of fecal contamination were detected in 25% of samples. S. aureus was isolated from 10% of samples. All were negative for Salmonella. Vibrio species, including Vibrio cholerae non-O1/non-O139, were observed in 85% of samples although Vibrio parahaemolyticus was not found in this study. Aeromonas spp., including A. hydrophila, was isolated from 50% of fish samples. The occurrence of these pathogens suggests that the fish commercialized in Sao Paulo may represent a health risk to the consumers.
Resumo:
The Tiete River and its tributary Pinheiros River receive a highly complex organic and inorganic pollutants load from sanitary sewage and industrial sources, as well as agricultural and agroindustrial activities. The aim of the present study was to evaluate the embryotoxic and teratogenic effects of sediments from selected locations in the Tiete River Basin by means of the sediment contact embryo toxicity assay with Danio rerio, in order to provide a comprehensive and realistic insight into the bioavailable hazard potential of these sediment samples. Lethal and sub-lethal effects were recorded, and high embryo toxicity could be found in the samples not only in the vicinity of the megacity Sao Paulo (Billings reservoir and Pinheiros River samples), but also downstream (in the reservoirs Barra Bonita, Promissao and Tres Irmaos). Results confirm that most toxicity is due to the discharges of the metropolitan area of Sao Paulo. However, they also indicate additional sources of pollutants along the river course, probably from industrial, agricultural and agroindustrial residues, which contribute to the degradation of each area. The sediment contact fish embryo test showed to be powerful tool to detect embryo toxicity in sediments, not only by being a sensitive method, but also for taking into account bioavailability. This test provides an ecological highly realistic and relevant exposure scenario, and should therefore be added in ecotoxicological sediment quality assessments. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Insulin is the hormone that plays an essential role in metabolism and mitosis of normal and tumor cells, exerting its pleiotropic effects through binding to specific membrane receptors and promoting the phosphorylation of tyrosine residues of the receptor itself and of other components of the signaling pathway. The aim of this study was to investigate the effects of insulin on melanogenesis and cell growth in three different cell lines: the goldfish GEM-81 erythrophoroma cells (undifferentiated and differentiated with 1.5% dimethylsulfoxide-DMSO), and the murine B16F10 and Cloudman S91 melanoma cells. Undifferentiated GEM-81 and B16F10 cells responded to insulin with a small increase of cell proliferation, whereas S91 cells responded with a decrease of growth. In the two mammalian cell lines, and in DMSO-differentiated GEM-81 cells, the hormone strongly inhibited melanogenesis, by decreasing tyrosinase activity. In undifferentiated GEM-81 cells, insulin had no effect on tyrosinase activity. An increase in the tyrosine phosphorylation status of pp 185 (insulin receptor substrate 1 and 2-IRS-1/2) phosphorylation degree was observed in S91 mouse melanoma and in differentiated GEM-81 erythrophoroma cells, suggesting that this specific protein was maintained during transformation process and participates in insulin signaling. Our results imply an ancient and diverse history of the insulin signaling system in vertebrate pigment cells. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
1. Prochilodus lineatus (Prochilodontidae, Characiformes) is a migratory species of great economic importance both in fisheries and aquaculture that is found throughout the Jacui, Paraiba do Sul, Parana, Paraguay and Uruguay river basins in South America. Earlier population studies of P. lineatus in the rio Grande basin (Parana basin) indicated the existence of a single population; however, the range of this species has been fragmented by the construction of several dams. Such dams modified the environmental conditions and could have constrained the reproductive migration of P. lineatus, possibly leading to changes in the population genetic structure. 2. In order to evaluate how genetic diversity is allocated in the rio Grande basin, 141 specimens of P. lineatus from eight collection sites were analysed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) with 15 restriction enzymes. 3. Forty-six haplotypes were detected, and 70% of them are restricted. The mean genetic variability indexes (h = 0.7721 and pi = 1.6%) were similar to those found in natural populations with a large effective size. Fst and Exact Test values indicated a lack of structuring among the samples, and the model of isolation by distance was tested and rejected. 4. The haplotype network indicated that this population of P. lineatus has been maintained as a single variable stock with some differences in the genetic composition (haplotypes) between samples. Indications of population expansion were detected, and this finding was supported by neutrality tests and mismatch distribution analyses. 5. The present study focused on regions between dams to serve as a parameter for further evaluations of genetic variability and the putative impact of dams and repopulation programmes in natural populations of P. lineatus. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Fluorescence in situ hybridization (FISH) using telomeric and ribosomal sequences was performed in four species of toad genus Chaunus: C. ictericus, C. jimi, C. rubescens and C. schneideri. Analyses based on conventional, C-banding and Ag-NOR staining were also carried out. The four species present a 2n = 22 karyotype, composed by metacentric and submetacentric chromosomes, which were indistinguishable either after conventional staining or banding techniques. Constitutive heterochromatin was predominantly located at pericentromeric regions, and telomeric sequences (TTAGGG)(n) were restricted to the end of all chromosomes. Silver staining revealed Ag-NORs located at the short arm of pair 7, and heteromorphism in size of NOR signals was also observed. By contrast, FISH with ribosomal probes clearly demonstrated absence of any heteromorphism in size of rDNA sequences, suggesting that the difference observed after Ag-staining should be attributed to differences in chromosomal condensation and/or gene activity rather than to the number of ribosomal cistrons.
Resumo:
We used c-Fos immunoreactivity to estimate neuronal activation in hypothalamic feeding-regulatory areas of 3-month-old rats fed control or oil-enriched diets (soy or fish) since weaning. While no diet effect was observed in c-Fos immunoreactivity of 24-h fasted animals, the acute response to refeeding was modified by both hyperlipidic diets but with different patterns. Upon refeeding, control-diet rats had significantly increased c-Fos immunoreactivity only in the paraventricular hypothalamic nucleus (PVH, 142%). In soy-diet rats, refeeding with the soy diet increased c-Fos immunoreactivity in dorsomedial hypothalamic nucleus (DMH, 271%) and lateral hypothalamic area (LH, 303%). Refeeding fish-diet rats with the fish diet increased c-Fos immunoreactivity in PVH (161%), DMH (177%), VMH (81%), and ARC (127%). Compared to the fish-diet, c-Fos immunoreactivity was increased in LH by the soy-diet while it was decreased in ventromedial hypothalamic nucleus (VMH) and arcuate hypothalamic nucleus (ARC). Based on the known roles of the activated nuclei, it is suggested that, unlike the fish-diet, the soy-diet induced a potentially obesogenic profile, with high LH and low VMH/PVH activation after refeeding.
Resumo:
Fish oil supplementation has been shown to improve the cachectic state of tumor-bearing animals and humans. Our previous study showed that fish oil supplementation (1 g per kg body weight per day) for 2 generations had anticancer and anticachetic effects in Walker 256 tumor-bearing rats as demonstrated by reduced tumor growth and body weight loss and increased food intake and survival. In this study, the effect of fish oil supplementation for 2 generations on membrane integrity, proliferation capacity, and CD4/CD8 ratio of lymphocytes isolated from mesenteric lymph nodes, spleen, and thymus of Walker 256 tumor-bearing animals was investigated. We also determined fish oil effect on plasma concentration and ex vivo production of cytokines [tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-4 (IL-4), IL-6, and IL-10]. Lymphocytes from thymus of tumor-bearing rats presented lower viability, but this change was abolished by fish oil supplementation. Tumor growth increased proliferation of lymphocytes from all lymphoid organs, and fish oil supplementation abolished this effect. Ex vivo production of TNF-alpha and IL-6 was reduced in supplemented animals, but IL-4 and IL-10 secretion was stimulated in both nontumor and tumor-bearing rats. IL-10 and IFN-gamma plasma levels was also decreased in supplemented animals. These results suggest that the anticachetic effects of fish oil supplementation for a long period of time (2 generations) in Walker 256 tumor-bearing rats may be associated to a decrease in lymphocyte function as demonstrated by reduced viability, proliferation capacity, and cytokine production.