124 resultados para Sodium acetate buffer pH 4.0
The effects of pH and ionic strength on topical delivery of a negatively charged porphyrin (TPPS(4))
Resumo:
Meso-tetra-[4-sulfonatophenyl]-porphyrin (TPPS(4)) is a charged porphyrin derivate used in photodynamic therapy (PDT) by parenteral administration. This study means to investigate potential enhancement for its topical delivery by determining the TPPS(4) dependence on the environmental characteristics and applying iontophoresis. In order to accomplish this task, cathodal and anodal iontophoresis as well as passive delivery of the drug were studied in vitro and in vivo in function of its concentration, pH and ionic strength. A reduction in drug concentration as well as the NaCl elimination from donor formulation at pH 2.0 increased TPPS(4) passive permeation through the skin in vitro. Iontophoresis improved TPPS(4) delivery across the skin when applied in solutions containing NaCl at pH 2.0, regardless electrode polarity. However, at pH 7.4, the amount of TPPS(4) permeated by iontophoresis was not different from that one permeated after passive experiments from a solution containing NaCl. Despite the fact that iontophoresis did not improve TPPS(4) transdermal delivery at this specific condition, in vivo experiments showed that 10 min of iontophoresis quickly and homogeneously delivered TPPS(4) to deeper skin layers when compared to passive administration, which is an important condition for topical treatment of skin tumors with PDT. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association.
Resumo:
The aims of this study were: (1) to correlate surface (SH) and cross-sectional hardness (CSH) with microradiographic parameters of artificial enamel lesions; (2) to compare lesions prepared by different protocols. Fifty bovine enamel specimens were allocated by stratified randomisation according to their initial SH values to five groups and lesions produced by different methods: MC gel (methylcellulose gel/lactic acid, pH 4.6, 14 days); PA gel (polyacrylic acid/lactic acid/hydroxyapatite, pH 4.8, 16 h); MHDP (undersaturated lactate buffer/methyl diphosphonate, pH 5.0, 6 days); buffer (undersaturated acetate buffer/fluoride, pH 5.0, 16 h), and pH cycling (7 days). SH of the lesions (SH(1)) was measured. The specimens were longitudinally sectioned and transverse microradiography (TMR) and CSH measured at 10- to 220-mu m depth from the surface. Overall, there was a medium correlation but non-linear and variable relationship between mineral content and root CSH. root SH(1) was weakly to moderately correlated with surface layer properties, weakly correlated with lesion depth but uncorrelated with integrated mineral loss. MHDP lesions showed the highest subsurface mineral loss, followed by pH cycling, buffer, PA gel and MC gel lesions. The conclusions were: (1) CSH, as an alternative to TMR, does not estimate mineral content very accurately, but gives information about mechanical properties of lesions; (2) SH should not be used to analyse lesions; (3) artificial caries lesions produced by the protocols differ, especially considering the method of analysis. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Objectives: This in vitro study aimed to analyse the effect of a single application of TiF(4) and NaF varnishes and solutions to protect against dentin erosion. Methods: Bovine root dentin samples were pre-treated with NaF-Duraphat varnish (2.26%F, pH 4.5), NaF/CaF(2)-Duofluorid varnish (5.63%F, pH 8.0), NaF-experimental varnish (2.45%F, pH 4.5), TiF(4)-experimental varnish (2.45%F, pH 1.2), NaF solution (2.26%F, pH 4.5), TiF(4) solution (2.45%F, pH 1.2) and placebo varnish (pH 5.0, no-F varnish control). Controls remained untreated. Ten samples in each group were then subjected to an erosive demineralisation (Sprite Zero, 4x 90 s/day) and remineralisation (artificial saliva, between the erosive cycles) cycling for S days. Dentin loss was measured profilometrically after pretreatment and after 1, 3 and 5 days of de-remineralisation cycling. The data were statistically analysed by two-way ANOVA and Bonferroni`s post hoc test (p < 0.05). Results: After pre-treatment, TiF(4) solution significantly induced surface loss (1.08 +/- 0.53 mu m). Only Duraphat reduced the dentin loss overtime, but it did not significantly differ from placebo varnish (at 3rd and 5th days) and TiF(4) varnish (at 3rd day). Conclusions: Duraphat varnish seems to be the best option to partially reduce dentin erosion. However, the maintenance of the effects of this treatment after successive erosive challenges is limited. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A pH indicator film based on cassava starch plasticized with sucrose and inverted sugar and incorporated with grape and spinach extracts as pH indicator sources (anthocyanin and chlorophyll) has been developed, and its packaging properties have been assessed. A second-order central composite design (2(2)) with three central points and four star points was used to evaluate the mechanical properties (tensile strength, tensile strength at break, and elongation at break percentage), moisture barrier, and microstructure of the films, and its potential as a pH indicator packaging. The films were prepared by the casting technique and conditioned under controlled conditions (75% relative humidity and 23 degrees C), at least 4 days before the analyses. The materials were exposed to different pH solutions (0, 2, 7, 10, and 14) and their color parameters (L*, a*, b*, and haze) were measured by transmittance. Grape and spinach extracts have affected the material characterization. Film properties (mechanical properties and moisture barrier) were strongly influenced by extract concentration presenting lower results than for the control. Films containing a higher concentration of grape extract presented a greater color change at different pH`s suggesting that anthocyanins are more effective as pH indicators than chlorophyll or the mixture of both extracts. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 1069-1079,2011
Resumo:
The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this work, the separation of nine phenolic acids (benzoic, caffeic, chlorogenic, p-coumaric, ferulic, gallic, protocatechuic, syringic, and vanillic acid) was approached by a 32 factorial design in electrolytes consisting of sodium tetraborate buffer(STB) in the concentration range of 10-50 mmol L(-1) and methanol in the volume percentage of 5-20%. Derringer`s desirability functions combined globally were tested as response functions. An optimal electrolyte composed by 50 mmol L(-1) tetraborate buffer at pH 9.2, and 7.5% (v/v) methanol allowed baseline resolution of all phenolic acids under investigation in less than 15 min. In order to promote sample clean up, to preconcentrate the phenolic fraction and to release esterified phenolic acids from the fruit matrix, elaborate liquid-liquid extraction procedures followed by alkaline hydrolysis were performed. The proposed methodology was fully validated (linearity from 10.0 to 100 mu g mL(-1), R(2) > 0.999: LOD and LOQ from 1.32 to 3.80 mu g mL(-1) and from 4.01 to 11.5 mu g mL(-1), respectively; intra-day precision better than 2.8% CV for migration time and 5.4% CV for peak area; inter-day precision better than 4.8% CV for migration time and 4.8-11% CV for peak area: recoveries from 81% to 115%) and applied successfully to the evaluation of phenolic contents of abiu-roxo (Chrysophyllum caimito), wild mulberry growing in Brazil (Morus nigra L.) and tree tomato (Cyphomandra betacea). Values in the range of 1.50-47.3 mu g g(-1) were found, with smaller amounts occurring as free phenolic acids. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 M Da, It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole range. Our zeta-potential data are consistent with light scattering results. Average values apt obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5,0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.
Resumo:
The electrochemical behavior of fluconazole showed an irreversible oxidation process, with the electrochemical - chemical mechanism being highly dependent on the electrode material. Adsorption of reagent at positive applied potential was observed at Pt electrode while preferential adsorption of the oxidation products was observed at Glassy Carbon surfaces. In pH below 7.0, the anodic current process was intensively decreased. At carbon paste electrode, the fluconazole oxidation current, recorded in phosphate buffer solution (pH 8.0), changed linearly with the fluconazole concentration, Ipa = 5.7×10-5 (mA) × 0.052 [Fluconazol] (μg mL-1), in the range of 48.0 to 250.0 μg mL-1. The detection limit obtained was 6.3 μg mL-1.
Resumo:
Solid-phase microextraction, using on-line bis(trimethylsilyl)trifluoroacetamide derivatisation, gas chromatography, and mass spectrometry, was evaluated in the quantification of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in water samples. Fibres encompassing a wide range of polarities were used with headspace and direct immersion sampling. For the immersion procedure, various parameters affecting MX extraction, including pH, salinity, temperature, and extraction time were evaluated. The optimised method (polyacrylate fibre; 20% Na2SO4; pH 2.0; 60 min; 20 °C) was applied for reservoir chlorinated water samples-either natural or spiked with MX (50 ng L-1 and 100 ng L-1). The recovery of MX ranged from 44 to 72%. Quantification of MX in water samples was done using external standard and the selected ion monitoring mode. Correlation coefficient (0.98%), relative standard deviation (5%), limit of detection (30 ng L-1) and limit of quantification (50 ng L-1) were obtained from calibration curve.
Resumo:
Objective: Our goal was to compare the in vivo biocompatibility of dental root surfaces submitted to four different treatments after tooth avulsion followed by implantation into rat subcutaneous tissue. Background Data: Dental root surface preparation prior to replanting teeth remains a challenge for endodontists. Root surface changes made by Nd:YAG irradiation could be an alternative preparation. Methods: Forty-eight freshly extracted human dental roots were randomly divided into four treatment groups prior to implantation into rat subcutaneous tissue: G1, dry root, left in the environment up to 3 h; G2, the same treatment as G1, followed by a soaking treatment in a 2.4% sodium fluoride solution (pH 5.5); G3, root soaked in physiologic saline after avulsion for 72 h; G4, the same treatment as G1, followed by Nd:YAG laser irradiation (2.0 W, 20 Hz, 100 mJ, and 124.34 J/cm(2)). The animals were sacrificed 1, 7, and 45 d later. Histological and scanning electron microscopy analyses were done. Results: All dental roots were involved and in intimate contact with connective tissue capsules of variable thicknesses. Differences were observed in the degree of inflammation and in connective tissue maturation. In G3 the inflammatory infiltrate was maintained for 45 d, whereas the Nd:YAG laser irradiation (G4) led to milder responses. The overall aspects of the root surfaces were similar, except by the irradiated roots, where fusion and resolidification of the root surface covering the dentinal tubules were observed. Conclusion: Nd:YAG laser irradiation improves the biocompatibility of dental root and thus could be an alternative treatment of dental root prior to replantation.
Resumo:
Objective: This in vitro study aimed to analyze the influence of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and sodium fluoride (NaF) varnishes and solutions to protect enamel against erosion. Background data: The effect of Nd:YAG laser irradiation on NaF and AmF was analyzed; however, there is no available data on the interaction between Nd:YAG laser irradiation and TiF(4). Methods: Bovine enamel specimens were pre-treated with NaF varnish, TiF(4) varnish, NaF solution, TiF(4) solution, placebo varnish, Nd:YAG (84.9 J/cm(2)), Nd:YAG prior to or through NaF varnish, Nd:YAG prior to or through TiF(4) varnish, Nd:YAG prior to or through NaF solution, Nd:YAG prior to or through TiF(4) solution, and Nd:YAG prior to or through placebo varnish. Controls remained untreated. Ten specimens in each group were then subjected to an erosive demineralization (Sprite Zero, 4x90 s/day) and remineralization (artificial saliva, between the erosive cycles) cycling for 5 days. Enamel loss was measured profilometrically (mu m). Additionally, treated but non-eroded specimens were additionally analyzed by scanning electron microscope (SEM) (each group n-2). The data were statistically analyzed by ANOVA and Tukey's post-hoc test (p < 0.05). Results: Only TiF(4) varnish (1.8 +/- 0.6 mu m), laser prior to TiF(4) varnish (1.7 +/- 0.3 mu m) and laser prior to TiF(4) solution (1.4 +/- 0.3 mu m) significantly reduced enamel erosion compared to the control (4.1 +/- 0.6 mu m). SEM pictures showed that specimens treated with TiF(4) varnish presented a surface coating. Conclusions: Nd:YAG laser irradiation was not effective against enamel erosion and it did not have any influence on the efficacy of F, except for TiF(4) solution. On the other hand, TiF(4) varnish protected against enamel erosion, without the influence of laser irradiation.
Resumo:
We report on K*(0) production at midrapidity in Au + Au and Cu + Cu collisions at root s(NN) = 62.4 and 200 GeV collected by the Solenoid Tracker at the Relativistic Heavy Ion Collider detector. The K*(0) is reconstructed via the hadronic decays K*(0) -> K(+)pi(-) and (K*(0)) over bar -> K(+)pi(-). Transverse momentum, p(T), spectra are measured over a range of p(T) extending from 0.2 GeV/c up to 5 GeV/c. The center-of-mass energy and system size dependence of the rapidity density, dN/dy, and the average transverse momentum, < p(T)>, are presented. The measured N(K*(0))/N(K) and N(phi)/N(K*(0)) ratios favor the dominance of rescattering of decay daughters of K*(0) over the hadronic regeneration for the K*(0) production. In the intermediate p(T) region (2.0 < p(T) < 4.0 GeV/c), the elliptic flow parameter, v(2), and the nuclear modification factor, R(CP), agree with the expectations from the quark coalescence model of particle production.
Resumo:
A simple method was developed for spectrophotometric determination of some nonsteroidal anti-inflammatory drugs (meloxicam, piroxicam and tenoxicam) based on the reduction of copper(II) in buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-biquinoline acid. The-biquinoline acid. The absorbance values at 558 nm, characteristic of the formed Cu(I)/4,4'-dicarboxy-2,2'-biquinoline complexes, are linear with the concentrations (5.7-40 mmol L(-1), n = 5) of these oxicams (meloxicam r = 0.998; piroxicam and tenoxicam r = 0.999). The limit of detection values, in mmol L(-1), calculated for meloxicam (2.7), piroxicam (1.2) and tenoxicam (1.3) was obtained with 99% confidence level and the relative standard deviations for meloxicam (3.1%), piroxicam (5.1%) and tenoxicam (1.2%) were calculated using a 25 mmol L(-1) solution (n = 7). Mean recovery values for meloxicam, piroxicam and tenoxicam forms were 100 +/- 6.9, 98.6 +/- 3.6 and 99.4 +/- 2.5%, respectively. The conditional potential of Cu(II)/Cu(I) in complex medium of 7.5 mmol L(-1) BCA was determined to be 629 +/- 11 mV vs. NHE.
Resumo:
Fenton reaction is thought to play an important role in wood degradation by brown-rot fungi. In this context, the effect of oxalic acid and pH on iron reduction by a biomimetic fungal chelator and on the adsorption/desorption of iron to/from wood was investigated. The results presented in this work indicate that at pH 2.0 and 4.5 and in the presence of oxalic acid, the phenolate chelator 2,3-dihydroxybenzoic acid (2,3-DHBA) is capable of reducing ferric iron only when the iron is complexed with oxalate to form Fe mono-oxalate (Fe(C(2)O(4))(+)). Within the pH range tested in this work, this complex formation occurs when the oxalate:Fe(3+) molar ratio is less than 20 (pH 2.0) or less than 10 (pH 4.5). When aqueous ferric iron was passed through a column packed with milled red spruce (Picea rubens) wood equilibrated at pH 2.0 and 4.5. it was observed that ferric iron binds to wood at pH 4.5 but not at pH 2.0, and the bound iron could then be released by application of oxalic acid at pH 4.5. The release of bound iron was dependent on the amount of oxalic acid applied in the column. When the amount of oxalate was at least 20-fold greater than the amount of iron bound to the wood, all bound iron was released. When Fe-oxalate complexes were applied to the milled wood column equilibrated in the pH range of 2-4.5, iron from Fe-oxalate complexes was bound to the wood only when the pH was 3.6 or higher and the oxalate:Fe(3+) molar ratio was less than 10. When 2,3-DHBA was evaluated for its ability to release iron bound to the milled wood, it was found that 2,3-DHBA possessed a greater affinity for ferric iron than the wood as 2,3-DHBA was capable of releasing the ferric iron bound to the wood in the pH range 3.6-5.5. These results further the understanding of the mechanisms employed by brown-rot fungi in wood biodegradation processes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The production of red pigments and citrinin by Monascus purpureus CCT3802 was investigated in submerged batch cultures performed in two phases: in the first phase, cells were grown on glucose, at pH 4.5, 5.5 or 6.5; after glucose depletion, pH was adjusted, when necessary, to 4.5, 5.5, 6.5, 7.0, 8.0 or 8.5, for a production phase. The highest total red pigments absorbance of 11.3 U was 16 times greater than the lowest absorbance and was achieved with growth at pH 5.5, followed by production at pH 8.5, which causes an immediate reduction of the intra cellular red pigments from 75% to 17% of the total absorbance. The lowest citrinin concentration, 5.5 mg L-1, was verified in the same culture while the highest concentration, 55 mg L-1, was verified in cultures entirely carried out at pH 5.5. An alkaline medium, besides promoting intra cellular red pigments excretion, strongly represses citrinin synthesis.