66 resultados para Inference module


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marinussaurus curupira, a new genus and species of Gymnophthalmidae lizard is described from Iranduba, state of Amazonas, Brazil. The genus is characterized by an elongate body; short and stout pentadactyl limbs; all digits clawed; single frontonasal; two prefrontals; absence of frontoparietals; interparietal and parietals forming a straight posterior margin, with interparietal shorter than parietals; distinctive ear opening and eyelid; few temporals; three pairs of chin shields; nasal divided; a distinct collar; smooth, mainly hexagonal, dorsal scales; smooth quadrangular ventral scales; two precloacal and three femoral pores on each side in males; pores between three or four scales. Parsimony (PAR) and partitioned Bayesian (BA) phylogenetic analyses with morphological and molecular data recovered the new genus as a member of the Ecpleopodini radiation of the Cercosaurinae. A close relationship of the new genus with Arthrosaura is postulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mites (Acari) have traditionally been treated as monophyletic, albeit composed of two major lineages: Acariformes and Parasitiformes. Yet recent studies based on morphology, molecular data, or combinations thereof, have increasingly drawn their monophyly into question. Furthermore, the usually basal (molecular) position of one or both mite lineages among the chelicerates is in conflict to their morphology, and to the widely accepted view that mites are close relatives of Ricinulei. Results: The phylogenetic position of the acariform mites is examined through employing SSU, partial LSU sequences, and morphology from 91 chelicerate extant terminals (forty Acariformes). In a static homology framework, molecular sequences were aligned using their secondary structure as guide, whereby regions of ambiguous alignment were discarded, and pre-aligned sequences analyzed under parsimony and different mixed models in a Bayesian inference. Parsimony and Bayesian analyses led to trees largely congruent concerning infraordinal, well-supported branches, but with low support for inter-ordinal relationships. An exception is Solifugae + Acariformes (P. P = 100%, J. = 0.91). In a dynamic homology framework, two analyses were run: a standard POY analysis and an analysis constrained by secondary structure. Both analyses led to largely congruent trees; supporting a (Palpigradi (Solifugae Acariformes)) clade and Ricinulei as sister group of Tetrapulmonata with the topology (Ricinulei (Amblypygi (Uropygi Araneae))). Combined analysis with two different morphological data matrices were run in order to evaluate the impact of constraining the analysis on the recovered topology when employing secondary structure as a guide for homology establishment. The constrained combined analysis yielded two topologies similar to the exclusively molecular analysis for both morphological matrices, except for the recovery of Pedipalpi instead of the (Uropygi Araneae) clade. The standard (direct optimization) POY analysis, however, led to the recovery of trees differing in the absence of the otherwise well-supported group Solifugae + Acariformes. Conclusions: Previous studies combining ribosomal sequences and morphology often recovered topologies similar to purely morphological analyses of Chelicerata. The apparent stability of certain clades not recovered here, like Haplocnemata and Acari, is regarded as a byproduct of the way the molecular homology was previously established using the instrumentalist approach implemented in POY. Constraining the analysis by a priori homology assessment is defended here as a way of maintaining the severity of the test when adding new data to the analysis. Although the strength of the method advocated here is keeping phylogenetic information from regions usually discarded in an exclusively static homology framework; it still has the inconvenience of being uninformative on the effect of alignment ambiguity on resampling methods of clade support estimation. Finally, putative morphological apomorphies of Solifugae + Acariformes are the reduction of the proximal cheliceral podomere, medial abutting of the leg coxae, loss of sperm nuclear membrane, and presence of differentiated germinative and secretory regions in the testis delivering their products into a common lumen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Identifying local similarity between two or more sequences, or identifying repeats occurring at least twice in a sequence, is an essential part in the analysis of biological sequences and of their phylogenetic relationship. Finding such fragments while allowing for a certain number of insertions, deletions, and substitutions, is however known to be a computationally expensive task, and consequently exact methods can usually not be applied in practice. Results: The filter TUIUIU that we introduce in this paper provides a possible solution to this problem. It can be used as a preprocessing step to any multiple alignment or repeats inference method, eliminating a possibly large fraction of the input that is guaranteed not to contain any approximate repeat. It consists in the verification of several strong necessary conditions that can be checked in a fast way. We implemented three versions of the filter. The first is simply a straightforward extension to the case of multiple sequences of an application of conditions already existing in the literature. The second uses a stronger condition which, as our results show, enable to filter sensibly more with negligible (if any) additional time. The third version uses an additional condition and pushes the sensibility of the filter even further with a non negligible additional time in many circumstances; our experiments show that it is particularly useful with large error rates. The latter version was applied as a preprocessing of a multiple alignment tool, obtaining an overall time (filter plus alignment) on average 63 and at best 530 times smaller than before (direct alignment), with in most cases a better quality alignment. Conclusion: To the best of our knowledge, TUIUIU is the first filter designed for multiple repeats and for dealing with error rates greater than 10% of the repeats length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cancer shows a great diversity in its clinical behavior which cannot be easily predicted using the currently available clinical or pathological markers. The identification of pathways associated with lymph node metastasis (N+) and recurrent head and neck squamous cell carcinoma (HNSCC) may increase our understanding of the complex biology of this disease. Methods: Tumor samples were obtained from untreated HNSCC patients undergoing surgery. Patients were classified according to pathologic lymph node status (positive or negative) or tumor recurrence (recurrent or non-recurrent tumor) after treatment (surgery with neck dissection followed by radiotherapy). Using microarray gene expression, we screened tumor samples according to modules comprised by genes in the same pathway or functional category. Results: The most frequent alterations were the repression of modules in negative lymph node (N0) and in non-recurrent tumors rather than induction of modules in N+ or in recurrent tumors. N0 tumors showed repression of modules that contain cell survival genes and in non-recurrent tumors cell-cell signaling and extracellular region modules were repressed. Conclusions: The repression of modules that contain cell survival genes in N0 tumors reinforces the important role that apoptosis plays in the regulation of metastasis. In addition, because tumor samples used here were not microdissected, tumor gene expression data are represented together with the stroma, which may reveal signaling between the microenvironment and tumor cells. For instance, in non-recurrent tumors, extracellular region module was repressed, indicating that the stroma and tumor cells may have fewer interactions, which disable metastasis development. Finally, the genes highlighted in our analysis can be implicated in more than one pathway or characteristic, suggesting that therapeutic approaches to prevent tumor progression should target more than one gene or pathway, specially apoptosis and interactions between tumor cells and the stroma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irreducible nonzero level modules with finite-dimensional weight spaces are discussed for nontwisted affine Lie superalgebras. A complete classification of such modules is obtained for superalgebras of type A(m, n)(boolean AND) and C(n)(boolean AND) using Mathieu's classification of cuspidal modules over simple Lie algebras. In other cases the classification problem is reduced to the classification of cuspidal modules over finite-dimensional cuspidal Lie superalgebras described by Dimitrov, Mathieu and Penkov. Based on these results a. complete classification of irreducible integrable (in the sense of Kac and Wakimoto) modules is obtained by showing that any such module is of highest weight, in which case the problem was solved by Kac and Wakimoto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a separable unital C*-algebra C with norm parallel to center dot parallel to, let E-n denote the Banach-space completion of the C-valued Schwartz space on R-n with norm parallel to f parallel to(2)=parallel to < f, f >parallel to(1/2), < f, g >=integral f(x)* g(x)dx. The assignment of the pseudodifferential operator A=a(x,D) with C-valued symbol a(x,xi) to each smooth function with bounded derivatives a is an element of B-C(R-2n) defines an injective mapping O, from B-C(R-2n) to the set H of all operators with smooth orbit under the canonical action of the Heisenberg group on the algebra of all adjointable operators on the Hilbert module E-n. In this paper, we construct a left-inverse S for O and prove that S is injective if C is commutative. This generalizes Cordes' description of H in the scalar case. Combined with previous results of the second author, our main theorem implies that, given a skew-symmetric n x n matrix J and if C is commutative, then any A is an element of H which commutes with every pseudodifferential operator with symbol F(x+J xi), F is an element of B-C(R-n), is a pseudodifferential operator with symbol G(x - J xi), for some G is an element of B-C(R-n). That was conjectured by Rieffel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work a downscaled multicommuted flow injection analysis setup for photometric determination is described. The setup consists of a flow system module and a LED based photometer, with a total internal volume of about 170 mu L The system was tested by developing an analytical procedure for the photometric determination of iodate in table salt using N,N-diethyl-henylenediamine (DPD) as the chromogenic reagent. Accuracy was accessed by applying the paired r-test between results obtained using the proposed procedure and a reference method, and no significant difference at the 95% confidence level was observed. Other profitable features, such as a low reagent consumption of 7.3 mu g DPD per determination: a linear response ranging from 0.1 up to 3.0 m IO(3)(-), a relative standard deviation of 0.9% (n = 11) for samples containing 0.5 m IO(3)(-), a detection limit of 17 mu g L(-1) IO(3)(-), a sampling throughput of 117 determination per hour, and a waste generation 600 mu L per determination, were also achieved. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the current work a Green Analytical Chemistry (GAC) procedure for photometric determination of orthophosphate in river water at mu g L-1 concentration level is described. The flow system module and the LED-based photometer were assembled together to constitute a compact unit in order to allow that a flow cell with optical path-length of 100mm was coupled to them. The photometric procedure based on the molybdenum blue method was implemented employing the multicommuted flow injection analysis approach, which provided facilities to allow reduction of reagent consumption and as well as waste generation. Aiming to prove the usefulness of the system, orthophosphate in river and tap waters was determined. Accuracy was ascertained by spiking samples with orthophosphate solution yielding recoveries ranging from 96% up to 107%. Other profitable features such as a wide linear response range between 10 to 800 mu g L-1 [image omitted]; a detection limit (3 sigma criterion) of 2.4 mu g L-1 [image omitted]; a relative standard deviation (n=7) of 2% using a typical water sample with concentration of 120 mu g L-1 [image omitted]; reagent consumption of 3.0mg ammonium molybdate, 0.3mg hydrazine sulfate, and 0.03mg stannous chloride per determination; a waste generation of 2.4mL per determination; and a sampling throughput of 20 determination per hours were also achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a family of algorithms for approximate inference in credal networks (that is, models based on directed acyclic graphs and set-valued probabilities) that contain only binary variables. Such networks can represent incomplete or vague beliefs, lack of data, and disagreements among experts; they can also encode models based on belief functions and possibilistic measures. All algorithms for approximate inference in this paper rely on exact inferences in credal networks based on polytrees with binary variables, as these inferences have polynomial complexity. We are inspired by approximate algorithms for Bayesian networks; thus the Loopy 2U algorithm resembles Loopy Belief Propagation, while the Iterated Partial Evaluation and Structured Variational 2U algorithms are, respectively, based on Localized Partial Evaluation and variational techniques. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The practicability of estimating directional wave spectra based on a vessel`s 1st order response has been recently addressed by several researchers. Different alternatives regarding statistical inference methods and possible drawbacks that could arise from their application have been extensively discussed, with an apparent preference for estimations based on Bayesian inference algorithms. Most of the results on this matter, however, rely exclusively on numerical simulations or at best on few and sparse full-scale measurements, comprising a questionable basis for validation purposes. This paper discusses several issues that have recently been debated regarding the advantages of Bayesian inference and different alternatives for its implementation. Among those are the definition of the best set of input motions, the number of parameters required for guaranteeing smoothness of the spectrum in frequency and direction and how to determine their optimum values. These subjects are addressed in the light of an extensive experimental campaign performed with a small-scale model of an FPSO platform (VLCC hull), which was conducted in an ocean basin in Brazil. Tests involved long and short crested seas with variable levels of directional spreading and also bimodal conditions. The calibration spectra measured in the tank by means of an array of wave probes configured the paradigm for estimations. Results showed that a wide range of sea conditions could be estimated with good precision, even those with somewhat low peak periods. Some possible drawbacks that have been pointed out in previous works concerning the viability of employing large vessels for such a task are then refuted. Also, it is shown that a second parameter for smoothing the spectrum in frequency may indeed increase the accuracy in some situations, although the criterion usually proposed for estimating the optimum values (ABIC) demands large computational effort and does not seem adequate for practical on-board systems, which require expeditious estimations. (C) 2009 Elsevier Ltd. All rights reserved.