77 resultados para Industrial activities
Resumo:
The effects of alkaline treatments of the wheat straw with sodium hydroxide were investigated. The optimal condition for extraction of hemicelluloses was found to be with 0.50 mol/l sodium hydroxide at 55C for 2 h. This resulted in the release of 17.3% of hemicellulose (% dry starting material), corresponding to the dissolution of 49.3% of the original hemicellulose. The yields were determined by gravimetric analysis and expressed as a proportion of the starting material. Chemical composition and physico-chemical properties of the samples of hemicelluloses were elucidated by a combination of sugar analyses, Fourier transform infrared (FTIR), and thermal analysis. The results showed that the treatments were very effective on the extraction of hemicelluloses from wheat straw and that the extraction intensity (expressed in terms of alkali concentration) had a great influence on the yield and chemical features of the hemicelluloses. The FTIR analysis revealed typical signal pattern for the hemicellulosic fraction in the 1,200-1,000 cm(-1) region. Bands between 1,166 and 1,000 cm(-1) are typical of xylans.
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
Seven food grade commercially available lipases were immobilized by covalent binding on polysiloxane-polyvinyl alcohol (POS-PVA) hybrid composite and screened to mediate reactions of industrial interest. The synthesis of butyl butyrate and the interesterification of tripalmitin with triolein were chosen as model reactions. The highest esterification activity (240.63 mu M/g min) was achieved by Candida rugosa lipase, while the highest interesterification yield (31%, in 72 h) was achieved by lipase from Rhizopus oryzae, with the production of about 15 mM of the triglycerides C(50) and C(52). This lipase also showed a good performance in butyl butyrate synthesis, with an esterification activity of 171.14 mu M/g min. The results demonstrated the feasibility of using lipases from C. rugosa for esterification and R. oryzae lipase for both esterification and interesterification reactions.
Resumo:
This work aimed at the production of stabilized derivatives of Thermomyces lanuginosus lipase (TLL) by multipoint covalent immobilization of the enzyme on chitosan-based matrices. The resulting biocatalysts were tested for synthesis of biodiesel by ethanolysis of palm oil. Different hydrogels were prepared: chitosan alone and in polyelectrolyte complexes (PEC) with kappa-carrageenan, gelatin, alginate, and polyvinyl alcohol (PVA). The obtained supports were chemically modified with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to increase support hydrophobicity, followed by activation with different agents such as glycidol (GLY), epichlorohydrin (EPI), and glutaraldehyde (GLU). The chitosan-alginate hydrogel, chemically modified with TNBS, provided derivatives with higher apparent hydrolytic activity (HA(app)) and thermal stability, being up to 45-fold more stable than soluble lipase. The maximum load of immobilized enzyme was 17.5 mg g(-1) of gel for GLU, 7.76 mg g(-1) of gel for GLY, and 7.65 mg g(-1) of gel for EPI derivatives, the latter presenting the maximum apparent hydrolytic activity (364.8 IU g(-1) of gel). The three derivatives catalyzed conversion of palm oil to biodiesel, but chitosan-alginate-TNBS activated via GLY and EPI led to higher recovered activities of the enzyme. Thus, this is a more attractive option for both hydrolysis and transesterification of vegetable oils using immobilized TLL, although industrial application of this biocatalyst still demands further improvements in its half-life to make the enzymatic process economically attractive.
Resumo:
BACKGROUND: Fatty acid sugar esters are used as non-ionic surfactants in cosmetics, foodstuffs and pharmaceuticals. In particular, monoesters of xylitol have attracted industrial interest due to their outstanding biological activities. In this work, xylitol monoesters were obtained by chemoenzymatic synthesis, in which, first, xylitol was made soluble in organic solvent by chemo-protecting reaction, followed by enzymatic esterification reaction using different acyl donors. A commercial immobilized Candida antartica lipase was used as catalyst, and reactions with pure xylitol were carried out to generate data for comparison. RESULTS: t-BuOH was found to be the most suitable solvent to carry out esterification reactions with both pure and protected xylitol. The highest yields were obtained for reactions carried out with pure xylitol, but in this case by-products, such as di- and tri-esters isomers were formed, which required a multi-step purification process. For the systems with protected xylitol, conversions of 86%, 58% and 24% were achieved using oleic, lauric and butyric acids, respectively. The structures of the monoesters were confirmed by (13)C- and (1)H-NMR and microanalysis. CONCLUSION: The chemoenzymatic synthesis of xylitol monoesters avoided laborious downstream processing when compared with reactions performed with pure xylitol. Monoesters production from protected xylitol was shown to be a practical, economical, and clean route for this process, allowing a simple separation, because there are no other products formed besides xylitol monoesters and residual xylitol. (C) 2009 Society of Chemical Industry
Resumo:
This study aimed to correlate the efficiency of enzymatic hydrolysis of the cellulose contained in a sugarcane bagasse sample pretreated with dilute H(2)SO(4) with the levels of independent variables such as initial content of solids and loadings of enzymes and surfactant (Tween 20), for two cellulolytic commercial preparations. The preparations, designated cellulase I and cellulase II, were characterized regarding the activities of total cellulases, endoglucanase, cellobiohydrolase, cellobiase, beta-glucosidase, xylanase, and phenoloxidases (laccase, manganese and lignin peroxidases), as well as protein contents. Both extracts showed complete cellulolytic complexes and considerable activities of xylanases, without activities of phenoloxidases. For the enzymatic hydrolyses, two 2(3) central composite full factorial designs were employed to evaluate the effects caused by the initial content of solids (1.19-4.81%, w/w) and loadings of enzymes (1.9-38.1 FPU/g bagasse) and Tween 20 (0.0-0.1 g/g bagasse) on the cellulose digestibility. Within 24 h of enzymatic hydrolysis, all three independent variables influenced the conversion of cellulose by cellulase I. Using cellulase II, only enzyme and surfactant loadings showed significant effects on cellulose conversion. An additional experiment demonstrated the possibility of increasing the initial content of solids to values much higher than 4.81% (w/w) without compromising the efficiency of cellulose conversion, consequently improving the glucose concentration in the hydrolysate.
Resumo:
This keynote paper aims at analyzing relevant industrial demands for grinding research. The chosen focus is to understand what are the main research challenges in the extensive industrial use of the process. Since the automotive applications are the most important driving forces for grinding development, the paper starts with an analysis on the main trends in more efficient engines and the changes in their components that will affect the grinding performance. A view from 23 machine tool builders is also presented based on a survey made in interviews and during the EMO and IMTS machine tool shows. Case studies received by the STC G members were used to show how research centers and industries are collaborating. A view from the authors and the final conclusions show hot topics for future grinding research. (C) 2009 CIRP.
Resumo:
Currently diverse industries have high pollution potential because their productive processes generate great volumes of refractory effluents. These effluents are problematic, mainly due to the presence of recalcitrant compounds that are detrimental in wastewater treatment plants using biological systems in their processes. In general, biological treatments do not remove refractory elements. Also, in most cases these compounds can inhibit the yield or are toxic for biota responsible to remove the polluting agents. The Advanced Oxidative Processes (AOPs) represent a technological alternative with a great potential for treatment of no biodegradable effluents. In this paper a review of the use of advanced oxidatives processes: Ozone (O(3)), peroxide of hydrogen (H(2)O(2)) and ultraviolet radiation (UV) is presented applied to the treatment of recalcitrant effluents.
Resumo:
The oxidative stress biomarkers of exposure, such as reduced glutathione (GSH), activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the levels of lipid peroxidation (LPO), were measured in the blood of three cichlid fish (Oreochromis niloticus, Tilapia rendalli, and Geophagus brasiliensis) taken during two seasons from two sites, unpolluted and polluted by industrial effluents, to evaluate the effectiveness of these biomarkers in assessing the impact of water contamination. The LPO levels in the blood were higher in fish from the metal-contaminated site and the chronic exposure led to significant changes in GPx, CAT, and SOD activities in all three cichlid species. The considerable variation of responses in these cichlids to water contamination evidenced differences in sensitivity to the metal contamination and/or in the potential to respond to it highlighting the importance of using a set of related biomarkers to assess the impact of water contamination. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Sao Paulo Research Foundation (FAPESP) in Brazil
Resumo:
Petri net (PN) modeling is one of the most used formal methods in the automation applications field, together with programmable logic controllers (PLCs). Therefore, the creation of a modeling methodology for PNs compatible with the IEC61131 standard is a necessity of automation specialists. Different works dealing with this subject have been carried out; they are presented in the first part of this paper [Frey (2000a, 2000b); Peng and Zhou (IEEE Trans Syst Man Cybern, Part C Appl Rev 34(4):523-531, 2004); Uzam and Jones (Int J Adv Manuf Technol 14(10):716-728, 1998)], but they do not present a completely compatible methodology with this standard. At the same time, they do not maintain the simplicity required for such applications, nor the use of all-graphical and all-mathematical ordinary Petri net (OPN) tools to facilitate model verification and validation. The proposal presented here completes these requirements. Educational applications at the USP and UEA (Brazil) and the UO (Cuba), as well as industrial applications in Brazil and Cuba, have already been carried out with good results.
Resumo:
The kinetics of the ethoxylation of fatty alcohols catalyzed by potassium hydroxide was studied to obtain the rate constants for modeling of the industrial process. Experimental data obtained in a lab-scale semibatch autoclave reactor were used to evaluate kinetic and equilibrium parameters. The kinetic model was employed to model the performance of an industrial-scale spray tower reactor for fatty alcohol ethoxylation. The reactor model considers that mass transfer and reaction occur independently in two distinct zones of the reactor. Good agreement between the model predictions and real data was found. These findings confirm the reliability of the kinetic and reactor model for simulating fatty alcohol ethoxylation processes under industrial conditions.
Resumo:
The main scope of this work is the implementation of an MPC that integrates the control and the economic optimization of the system. The two problems are solved simultaneously through the modification of the control cost function that includes an additional term related to the economic objective. The optimizing MPC is based on a quadratic program (QP) as the conventional MPC and can be solved with the available QP solvers. The method was implemented in an industrial distillation system, and the results show that the approach is efficient and can be used, in several practical cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Success in a public health system is related to its ability to change its production process and to deal with general principles of the health system, such as universality and equity. The frameworks proposed by service marketing scholars have been developed primarily for private services; they focus on acceptance by the targeted client-users, and on the technical specifications of the new service delivery processes. Little attention has been given to the employees` point of view and their activities to maintain service operations modulated by innovation. In a public health system, workers make decisions in real time related to users` needs and the technical specifications of the process; therefore, it is very important to understand how the changes impact on employees` activities and on the quality delivered for citizens. This article discusses how changes implemented in Sao Paulo, Brazil impact the organizational parameters and working activities for front-line workers. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The study of Information Technology (IT) outsourcing is relevant because companies are outsourcing their activities more than ever. An important IT outsourcing research area is the decision-making process. In other words, the comprehension of how companies decide about outsourcing their IT operations is relevant from research point of view. Therefore, the objective of this study is to understand the decision-making process used by Brazilian companies when outsourcing their IT operations. An analysis of the literature that refers to this subject showed that six aspects are usually considered by companies on the evaluation of IT outsourcing service alternatives. This research verified how these six aspects are considered by Brazilian companies on IT outsourcing decisions. The survey showed that Brazilian companies consider all the six aspects, but each of them has a different level of importance. The research also grouped the aspects according to their level of importance and interdependency, using factorial analysis to understand the logic behind IT outsourcing decision process. (C) 2009 Elsevier B.V. All rights reserved.