35 resultados para HYPERVALENT IODINE REAGENTS
Resumo:
Tetra-alkoxysilanes are common and useful reagents in sol-gel processes and understanding their reactivity is important in the design of new materials. The mechanism of gas-phase reactions that mimic alcoholyis of Si(OMe)(4) (usually known as TMOS) under acidic conditions have been studied by Fourier transform ion cyclotron resonance techniques and density functional calculations at the B3LYP/6-311+G(d,p) level. The proton affinity of TMOS has been estimated at 836.4 kJ mol(-1) and protonation of TMOS gives rise to an ionic species that is best represented as trimethoxysilyl cations associated with a methanol molecule. Protonated TMOS undergoes rapid and sequential substitution of the methoxy groups in the gas-phase upon reaction with alcohols. The calculated energy profile of the reaction indicates that the substitution reaction through an S(N)2 type mechanism may be more favorable than frontal attack at silicon. Furthermore, the sequential substitution reactions are promoted by a mechanism that involves proton shuttle from the most favorable protonation site to the oxygen of the departing group mediated by the neutral reagent molecule.
Resumo:
A new route to obtain the polyalkylated indole (+/-)-trans-trikentrin A was developed. The synthesis of this natural alkaloid features a thallium(III)mediated ring contraction reaction to obtain the trans-1,3-disubstituted five-membered ring in a diastereoselective manner. Thallium(III) is chemoselective in this rearrangement, reacting with the olefin without oxidation of the indole moiety. Other key transformations are the Bartoli`s reaction to construct the heterocyclic ring and a Heck coupling to add the carbons atom that will originate the nonaromatic cycle.
Resumo:
A new class of chiral beta-amino disulfides was synthesized from readily available and inexpensive starting materials by a straightforward method and their abilities as ligands were examined in the enantioselective addition of diethylzinc to aldehydes. Enantiomeric excesses of up to 99% have been obtained using 0.5 mol % of the chiral catalysts.
Resumo:
A different and improved procedure for the preparation of [bis(2,2,2-trifluoroethyl)phosphono]acetic acid in just one step from bis(2,2,2-trifluoroethyl)phosphonate is described. The protocol employs a Michaelis-Becker reaction between commercially available bis(2,2,2-trifluoroethyl) phosphonate and bromoacetic acid, furnishing [bis(2,2,2-trifluoroethyl)phosphono]acetic acid in 50-54% yield.
Resumo:
This article describes a prototype system for quantifying bioassays and for exchanging the results of the assays digitally with physicians located off-site. The system uses paper-based microfluidic devices for running multiple assays simultaneously, camera phones or portable scanners for digitizing the intensity of color associated with each colorimetric assay, and established communications infrastructure for transferring the digital information from the assay site to an off-site laboratory for analysis by a trained medical professional; the diagnosis then can be returned directly to the healthcare provider in the field. The microfluidic devices were fabricated in paper using photolithography and were functionalized with reagents for colorimetric assays. The results of the assays were quantified by comparing the intensities of the color developed in each assay with those of calibration curves. An example of this system quantified clinically relevant concentrations of glucose and protein in artificial urine. The combination of patterned paper, a portable method for obtaining digital images, and a method for exchanging results of the assays with off-site diagnosticians offers new opportunities for inexpensive monitoring of health, especially in situations that require physicians to travel to patients (e.g., in the developing world, in emergency management, and during field operations by the military) to obtain diagnostic information that might be obtained more effectively by less valuable personnel.