204 resultados para Electrochemical behavior
Resumo:
This paper presents a study on the ethanol oxidation reaction using SnO(2)@Pt/C core-shell structures as electrocatalysts. All the materials used, including Pt/C and PtSn/C E-tek, were 20% (w/w) metal on carbon. The formation of core-shell nanoparticles (SnO(2)@Pt/C) was measured by UV-vis spectrophotometry. X-ray diffraction measurements showed Pt (shell) diffraction patterns without influence from the SnO(2) core and without any shift in 2 theta values for Pt. The diameters of the core-shell particle structures, measured using high-resolution transmission electron microscopy images, were in the range of 3-16 nm. The electrochemical profile for SnO(2)@Pt/C in an acidic medium (H(2)SO(4) at a concentration of 0.5 mol L(-1)) was almost the same as the typical electrochemical behavior for Pt in an acidic medium. Furthermore, the onset potential for the ethanol oxidation reaction using SnO(2)@Pt/C was almost the same as that for PtSn/C E-tek (0.23 V versus the reversible hydrogen electrode). However, the mass current peak densities for ethanol oxidation were 50% higher on SnO(2)@Pt/C than on PtSn/C E-tek. In the polarization curve, the mass current density for ethanol oxidation was higher at all potentials for SnO(2)@Pt/C when compared to Pt/C and PtSn/C E-tek. At 0.5 V, the current mass density for ethanol oxidation on SnO(2)@Pt was 2.3 times of that for the same process on the commercial material. The electrocatalytic activity of SnO(2)@Pt/C for ethanol oxidation was associated with an increase in the electrochemically active surface area. However, an electronic effect should also be considered because the Pt shell changes its electronic structure in the presence of the foreign core. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical activation and physical degradation of boron-doped diamond (BDD) electrodes with different boron doping levels after repeated cathodic pretreatments are reported. Galvanostatic cathodic pretreatment passing up to -14000 C cm(-2) in steps of -600 C cm(-2) using -1 A cm(-2) caused significant physical degradation of the BDD surface, with film detachment in some areas. Because of this degradation, a great increase in the electrochemically active area was observed in Tafel plots for the hydrogen evolution reaction (HER) in acid media. The minimum cathodic pretreatment needed for the electrochemical activation of the BDD electrodes without producing any observable physical degradation on the BDD surfaces was determined using electrochemical impedance spectroscopy (EIS) measurements and cyclic voltammetry: -9 C cm(-2), passed at -1 A cm(-2). This optimized cathodic pretreatment can be safely used when electrochemical experiments are carried out on BDD electrodes with doping levels in the range between 800 and 8000 ppm.
Resumo:
The search for more efficient anode catalyst than platinum to be used in direct alcohol fuel cell systems is an important challenge. In this study, boron-doped diamond film surfaces were modified with Pt, Pt-SnO(2) and Pt-Ta(2)O(5) nano-crystalline deposits by the sol-gel method to study the methanol and ethanol electro-oxidation reactions in acidic medium. Electrochemical experiments carried out in steady-state conditions demonstrate that the addition of SnO(2) to Pt produces a very reactive electrocatalyst that possibly adsorbs and/or dissociate ethanol more efficiently than pure Pt changing the onset potential of the reaction by 190 mV toward less positive potentials. Furthermore, the addition of Ta(2)O(5) to Pt enhances the catalytic activity toward the methanol oxidation resulting in a negative shift of the onset potential of 170 mV. These synergic effects indicate that the addition of these co-catalysts inhibits the poisoning effect caused by strongly adsorbed intermediary species. Since the SnO(2) catalyst was more efficient for ethanol oxidation, it could probably facilitate the cleavage of the C-C bond of the adsorbed intermediate fragments of the reaction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We present in this work a comprehensive investigation of the role played by dissolved tetrafluoroboric acid on the electrochemical response of a polycrystalline platinum electrode in acidic media. HBF(4) from two different suppliers was employed and characterized in terms of the amount of arsenic contamination by Inductively Coupled Plasma-Optical Emission Spectroscopy. The effect of different amounts of HBF(4) on the voltammetric profile of the Pt vertical bar HClO(4)(aq) interface was investigated by means of electrochemical quartz crystal nanobalance (EQCN). Despite the comparable cyclic voltammograms, the presence of arsenic in one of the two HBF(4) used resulted in dramatic variations in the mass change profile, which evidences the deposition/dissolution of arsenic prior to the surface oxidation. For the arsenic-free HBF(4), its effect on the mass change profile was mainly associated to anion adsorption. The impact of dissolved HBF(4) on the electro-oxidation of formic acid was rationalized in terms of two contributions: current enhancement at low potentials due to the arsenic-assisted formic acid electro-oxidation and inhibition at high potentials due to anion adsorption. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Platinum stepped surfaces vicinal to the (1 1 0) crystallographic pole have been investigated voltammetrically in 0.1 M HClO(4) and 0.1 M H(2)SO(4) solutions. Changes in the voltammetric profile with the step density suggest the existence of two types of surface sites, that has been ascribed to linear and bidimensional domains. This result indicates the existence of important restructuring processes that separate the real surface distribution from the nominal one. The electronic properties of the surfaces have been characterized with the CO charge displacement method and the potential of zero total charge has been calculated as a function of the step density. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A simple and highly selective electrochemical method was developed for the single or simultaneous determination of paracetamol (N-acetyl-p-aminophenol, acetaminophen) and caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) in aqueous media (acetate buffer, pH 4.5) on a boron-doped diamond (BDD) electrode using square wave voltammetry (SWV) or differential Pulse voltammetry (DPV). Using DPV with the cathodically pre-treated BDD electrode, a separation of about 550 mV between the peak oxidation potentials Of paracetamol and caffeine present in binary mixtures was obtained. The calibration curves for the simultaneous determination of paracetamol and caffeine showed an excellent linear response, ranging from 5.0 x 10(-7) mol L(-1) to 8.3 x 10(-7) mol L(-1) for both compounds. The detection limits for the simultaneous determination of paracetamol and caffeine were 4.9 x 10(-7) mol L-1 and 3.5 x 10(-8) mol L(-1), respectively. The proposed method Was Successfully applied in the simultaneous determination of paracetamol and caffeine in several pharmaceutical formulations (tablets), with results similar to those obtained using a high-performance liquid chromatography method (at 95% confidence level). (C) 2008 Elsevier BY. All rights reserved.
Resumo:
Nitrofurazone (NF) presents activity against Chagas' disease, yet it has a high toxicity. Its analog, hydroxymethylnitrofurazone (NFOH), is more potent against Trypanosoma cruzi and much less toxic than the parent drug, NF. The electrochemical reduction of NFOH in an aqueous medium using a glassy carbon electrode (GCE) is presented. By cyclic voltammetry in anacidic medium, one irreversible reduction peak related to hydroxylamine derivative formation was registered, being linearly pH dependent. However, from pH > 7, a reversible reduction peak at a more positive potential appears and corresponds to the formation of a nitro radical anion. The radical-anion kinetic stability was evaluated by Ip(a)/Ip(c) the current ratio of the R-NO(2)/R-NO(2)-redox couple. The nitro radical anion decays with a second-order rate constant (k(2)) of 6.07, 2.06, and 1.44(X 10(3)) L mol(-1) s(-1) corresponding to pH 8.29, 9.29, and 10.2, respectively, with a corresponding half-time life (t(1/2)) of 0.33, 0.97, and 1.4 s for each pH value. By polishing the GCE surface with diamond powder and comparing with the GCE surface polished with alumina, it is shown that the presence of alumina affects the lifetime of the nitro radical anion. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3130082] All rights reserved.
Resumo:
A series of (E) and (Z)-ferrocenyl oxindoles were prepared by coupling substituted oxindoles to ferrocenylcarboxyaldehyde in the presence of morpholine as a catalyst. The redox behavior of these isomers was determined by cyclic voltammetry. The effects of the oxindole derivatives on the migration of human breast cancer cells were evaluated using the wound-healing assay and the Boyden chamber cell-migration assay. The most potent Z isomers 11b (IC(50) = 0.89 mu M), 12b (IC(50) = 0.49 mu M) and 17b (IC(50) = 0.64 mu M) could represent attractive new lead compounds for further development for cancer therapy.
Resumo:
Oxidation of ethanol on ruthenium-modified Pt(775) and Pt(332) stepped electrodes has been studied using electrochemical and FTIR techniques. It has been found that the oxidation of ethanol on these electrodes takes place preferentially on the step sites yielding CO(2) as the major final product. The cleavage of the C-C bond, which is the required step to yield CO(2), occurs only on this type of site. The presence of low ruthenium coverages on the step sites promotes the complete oxidation of ethanol since it facilitates the oxidation of CO formed on the step from the cleavage of the C-C bond. However, high ruthenium coverages have an important inhibiting effect since the adatoms block the step sites, which are required for the cleavage of the C-C bond. Under these conditions, the oxidation current diminishes and the major product in the oxidation process is acetic acid, which is the product formed preferentially on the (111) terrace sites.
Resumo:
Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.
Resumo:
Ethanol oxidation on platinum stepped surfaces vicinal to the (111) pole modified by tin has been studied to determine the role of this adatom in the oxidation mechanism. Tin has been slowly deposited so that the initial stages of the deposition take place on the step, and deposition on the terrace only occurs when the step has been completely decorated. Voltammetric and chronoamperometric experiments demonstrate that tin on the step catalyzes the oxidation. The maximum enhancement is found when the step is completely decorated by tin. FTIR experiments using normal and isotopically labeled ethanol have been used to elucidate the effect of the tin adatoms in the mechanism. The obtained results indicate that the role of tin is double: (i) when the surface has sites capable of breaking the C-C bond of the molecule, that is, when the step sites are not completely covered by tin, it promotes the oxidation of CO formed from the molecular fragments to CO(2) through a bifunctional mechanism and (ii) it catalyzes the oxidation of ethanol to acetic acid.
Resumo:
This paper describes the preparation of a Pt-Rh alloy surface electrodeposited on Pt electrodes and its electrocatalytic characterization for methanol oxidation. The X-ray photoelectronic spectroscopy ( XPS) results demonstrate that the surface composition is approximately 24 at-% Rh and 76 % Pt. The cyclic voltammetry (CV) and electrochemical quartz crystal (EQCN) results for the alloy were associated, for platinum, to the well known profile in acidic medium. For Rh, on the alloy, the generation of rhodium hydroxide species (Rh(OH)(3) and RhO(OH)(3)) was measured. During the successive oxidation-reduction cycles the mass returns to its original value, indicating the reversibility of the processes. It was not observed rhodium dissolution during the cycling. The 76/24 at % Pt-Rh alloy presented singular electrocatalytic activity for methanol electrooxidation, which started at more negative potentials compared to pure Pt (70 mV). During the sweep towards more negative potentials, there is only weak CO re-adsorption on both Rh and Pt-Rh alloy surfaces, which can be explained by considering the interaction energy between Rh and CO.
Resumo:
Polarization measurements were conducted to monitor the corrosion behavior of superduplex stainless steel ASTM A995M-Gr.SA/EN 10283-Mat#1.4469(GX2CrNiMo26-7-4) when exposed to a) an electrolyte containing 22,700 parts per million (ppm) of chloride ions at seven different temperatures and b) an electrolyte at 25 GC and different chloride ion concentrations (5800, 22,700, 58,000 and 80,000 ppm of Cl(-)). The polarization curves indicate that the passive films formed are only slightly affected by NaCl concentration, but the pitting potential decreases drastically increasing the temperature, in particular >60 degrees C. The image analysis of the microstructure after potentiodynamic polarization showed that the pitting number and size vary in function of the temperature of the tested medium. Nyquist diagrams were determined by electrochemical impedance spectroscopy to characterize the resistance of the passive layer. According to Nyquist plots, the arc polarization resistance decreases increasing the temperature due to a catalytic degradation of the oxide passive films. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The 475 degrees C embrittlement in stainless steels is a well-known phenomenon associated to alpha prime (alpha`) formed by precipitation or spinodal decomposition. Many doubts still remain on the mechanism of alpha` formation and its consequence on deformation and fracture mechanisms and corrosion resistance. In this investigation, the fracture behavior and corrosion resistance of two high performance ferritic stainless steels were investigated: a superferritic DIN 1.4575 and MA 956 superalloy were evaluated. Samples of both stainless steels (SS) were aged at 475 degrees C for periods varying from 1 to 1,080 h. Their fracture surfaces were observed using scanning electron microscopy (SEM) and the cleavage planes were determined by electron backscattering diffraction (EBSD). Some samples were tested for corrosion resistance using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Brittle and ductile fractures were observed in both ferritic stainless steels after aging at 475 degrees C. For aging periods longer than 500 h, the ductile fracture regions completely disappeared. The cleavage plane in the DIN 1.4575 samples aged at 475 degrees C for 1,080 h was mainly {110}, however the {102}, {314}, and {131} families of planes were also detected. The pitting corrosion resistance decreased with aging at 475 degrees C. The effect of alpha prime on the corrosion resistance was more significant in the DIN 1.4575 SS comparatively to the Incoloy MA 956.
Resumo:
In the present work, the corrosion resistance of ferritic-martensitic EUROFER 97 and ODS-EUROFER steels was tested in solutions containing NaCl or H(2)SO(4) and KSCN, both at 25 degrees C. The results were compared to those of AISI 430 ferritic and AISI 410 martensitic conventional stainless steels. The as-received samples were tested by electrochemical techniques, specifically, electrochemical impedance spectroscopy, potentiodynamic polarization curves, and double-loop electrochemical potentiokinetic reactivation tests. The surfaces were observed by scanning electron microscopy after exposure to corrosive media. The results showed that EUROFER 97 and ODS-EUROFER alloys present similar corrosion resistance but lower than ferritic AISI 430 and martensitic 410 stainless steels.